Burgers Turbulence and Random Lagrangian Systems

被引:0
|
作者
R. Iturriaga
K. Khanin
机构
[1] Centro de Investigacion en Matematica,
[2] Apartado Postal 402,undefined
[3] Guanajuato Gto.,undefined
[4] 36000 Mexico. E-mail: renato@cimat.mx,undefined
[5] Isaac Newton Institute for Mathematical Sciences,undefined
[6] University of Cambridge,undefined
[7] 20 Clarkson Road,undefined
[8] Cambridge CB3 OEH,undefined
[9] UK. E-mail: K.Khanin@newton.cam.ac.uk,undefined
[10] Department of Mathematics,undefined
[11] Heriot-Watt University,undefined
[12] Edinburgh,undefined
[13] UK,undefined
[14] Landau Institute for Theoretical Physics,undefined
[15] Moscow,undefined
[16] Russia,undefined
来源
Communications in Mathematical Physics | 2003年 / 232卷
关键词
Viscosity; Stationary Distribution; Invariant Measure; Arbitrary Dimension; Burger Equation;
D O I
暂无
中图分类号
学科分类号
摘要
 We consider a spatially periodic inviscid random forced Burgers equation in arbitrary dimension and the random time-dependent Lagrangian system related to it. We construct a unique stationary distribution for ``viscosity'' solutions of the Burgers equation. We also show that with probability 1 there exists a unique minimizing trajectory for the random Lagrangian system which generates a non-trivial ergodic invariant measure for the non-random skew-product extension of the Lagrangian system.
引用
收藏
页码:377 / 428
页数:51
相关论文
共 42 条