Commutators of Bilinear θ-Type Calderón–Zygmund Operators on Morrey Spaces Over Non-Homogeneous Spaces

被引:0
作者
G.-H. Lu
机构
[1] Northwest Normal University,College of Mathematics and Statistics
来源
Analysis Mathematica | 2020年 / 46卷
关键词
non-homogeneous metric measure space; commutator; bilinear ; -type Calderón–Zygmund operator; Morrey space; primary 42B20; secondary 46E30; 42B35; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to establish the boundedness of the commutator [b1, b2, Tθ], which generated by the bilinear θ-type Calderón–Zygmund operators Tθ and the functions b1,b2∈RBMO~(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_1, b_2 \in \widetilde {RBMO}(\mu)$$\end{document}, on non-homogeneous metric measure space satisfying the so-called geometrically doubling and the upper doubling conditions. Under the assumption that the dominating function λ satisfies the ε-weak reverse doubling conditions, the author proves that the commutator [b1, b2, Tθ] is bounded from the Lebesgue space Lp(μ) into the product of Lebesgue space Lp1(μ)×Lp2(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{{p_1}}}(\mu ) \times {L^{{p_2}}}(\mu )$$\end{document} with 1p=1p1+1p2(1<p,p1,p2<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{p} = \frac{1}{{{p_1}}} + \frac{1}{{{p_2}}}(1 < p,{p_1},{p_2} < \infty )$$\end{document}. Furthermore, the boundedness of the commutator [b1, b2, Tθ] on Morrey space Mpq(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p^q(\mu)$$\end{document} is also obtained, where 1 < q ≤ p < ∞.
引用
收藏
页码:97 / 118
页数:21
相关论文
共 55 条
[1]  
Bui T A(2013)Hardy spaces, regularized BMO spaces and the boundedness of Calderón–Zygmund operators on non-homogeneous spaces J. Geom. Anal. 23 895-932
[2]  
Duong X T(2017)Maximal multilinear commutators on Non-homogeneous metric measure spaces Taiwanese J. Math. 21 1133-1160
[3]  
Chen J(2005)Calderón–Zygmund operator on Hardy spaces without the doubling condition Proc. Amer. Math. Soc. 133 2671-2680
[4]  
Lin H(2002)A note on commutators of fractional integrals with RBMO( Illinois J. Math. 46 1287-1298
[5]  
Chen W(1977)) functions Bull. Amer. Math. Soc. 83 569-645
[6]  
Meng Y(2014)Extensions of Hardy spaces and their use in analysis J. Math. Anal. Appl. 410 1028-1042
[7]  
Yang D(2012)The molecular characterization of the Hardy space Taiwanese J. Math. 16 2203-2238
[8]  
Chen W(2014)1 on non-homogeneous metric measure spaces and its application Taiwanese J. Math. 18 509-557
[9]  
Sawyer E(2010)Boundedness of multilinear commutators of Calderón–Zygmund operators on Orlicz spaces over non-homogeneous spaces Publ. Math. 54 485-504
[10]  
Coifman R R(2005)Generalized fractional integral and their commutators over non-homogeneous metric measure spaces Math. Proc. Cambridge Philos. Soc. 138 151-171