On the Controllability of an Advection-diffusion Equation with Respect to the Diffusion Parameter: Asymptotic Analysis and Numerical Simulations

被引:0
作者
Youcef Amirat
Arnaud Münch
机构
[1] Université Clermont Auvergne,Laboratoire de Mathématiques Blaise Pascal
[2] UMR CNRS 6620,undefined
[3] Campus universitaire des Cézeaux,undefined
来源
Acta Mathematicae Applicatae Sinica, English Series | 2019年 / 35卷
关键词
numerical approximation; space-time variational formulation; asymptotic analysis; boundary layers; null controllability; 35K05; 35R30; 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
The advection-diffusion equation yεt − εyεxx + Myεx = 0, (x, t) ∈ (0, 1) × (0, T) is null controllable for any strictly positive values of the diffusion coefficient ε and of the controllability time T. We discuss here the behavior of the cost of control when the coefficient ε goes to zero, according to the values of T. It is actually known that this cost is uniformly bounded with respect to ε if T is greater than a minimal time TM, with TM in the interval [1,23]/M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {1,2\sqrt 3 } \right]/M$$\end{document} for M > 0 and in the interval [22,2(1+3)]/|M|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {2\sqrt 2 ,2\left( {1 + \sqrt 3 } \right)} \right]/|M|$$\end{document} for M< 0. The exact value of TM is however unknown.
引用
收藏
页码:54 / 110
页数:56
相关论文
共 43 条
  • [1] Barbosa H. J.C.(1991)The finite element method with Lagrange multipliers on the boundary: circumventing the Babu?ska–Brezzi condition Computer Methods in Applied Mechanics and Engineering 85 109-128
  • [2] Hughes T. J.R.(2015)On the Dirichlet boundary controllability of the onedimensional heat equation: semi–analytical calculations and ill–posedness degree Inverse Problems. An International on the Theory and Practice of Inverse Problems, Inverse Methods and Computerized Inversion of Data 27 055012-484
  • [3] BenBelgacem F.(1994)On exact and approximate boundary controllabilities for the heat equation: a numerical approach J. Optim. Theory Appl. of Optimization Theory and Applications 82 429-545
  • [4] Kaber S. Ma.hmoud(1993)The inf–sup test Comput. & Structures 47 537-288
  • [5] Carthel C.(2015)A mixed formulation for the direct approximation of the control of minimal L2–norm for linear type wave equations Calcolo 52 245-257
  • [6] Glowinski R.(2005)Singular optimal control: a linear 1–D parabolic–hyperbolic example Asymptot. Anal. 44 237-1715
  • [7] Lions Ja.cques–Lo.uis(2018)On the Reachable Set for the One–Dimensional Heat Equation SIAM J. Control Optim. 56 1692-526
  • [8] Chapelle D.(2015)L2–stability independent of diffusion for a finite element–finite volume discretization of a linear convection–diffusion equation SIAM J. Numer. Anal. 53 508-1758
  • [9] Bathe Kl.aus–Ju.rgen(2010)Boundary controllability of parabolic coupled equations J. Funct. Anal. 259 1720-285
  • [10] Nicolae Ĉ(2014)Numerical exact controllability of the 1D heat equation: duality and Carleman weights J. Optim. Theory Appl. 163 253-868