Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball

被引:0
作者
V. V. Karachik
机构
[1] National Research South Ural State University,
来源
Differential Equations | 2015年 / 51卷
关键词
Unit Ball; Dirichlet Problem; Neumann Problem; Polynomial Solution; Polyharmonic Function;
D O I
暂无
中图分类号
学科分类号
摘要
We find a polynomial solution of the Dirichlet problem with polynomial boundary data for the polyharmonic equation with polynomial right-hand side in the unit ball.
引用
收藏
页码:1033 / 1042
页数:9
相关论文
共 24 条
[1]  
Nicolescu N.(1958)Probléme de l’analyticité par rapport á un opérateur linéaire Studia Math. 16 353-363
[2]  
Kal’menov T.Sh.(2012)On a New Method for Constructing the Green Function of the Dirichlet Problem for the Polyharmonic Equation Differ. Uravn. 48 435-438
[3]  
Suragan D.(2010)Necessary and Sufficient Conditions for the Solvability of Boundary Value Problems for an Inhomogeneous Polyharmonic Equation in a Ball Ufimsk. Mat. Zh. 2 41-52
[4]  
Kanguzhin B.E.(1992)Dirichlet’s Problem When the Data is an Entire Function Bull. London Math. Soc. 24 456-468
[5]  
Koshanov B.D.(2008)Real Bargmann Spaces, Fischer Decompositions and Sets of Uniqueness for Polyharmonic Functions Duke Math. J. 142 313-352
[6]  
Khavinson D.(2012)Solvability Conditions of the Neumann Boundary Value Problem for the Biharmonic Equation in the Unit Ball Internat. J. Pure Appl. Math. 81 487-495
[7]  
Shapiro H.S.(2013)Solvability Conditions for the Neumann Problem for the Polyharmonic Equation in the Unit Ball Sib. Zh. Ind. Mat. 16 61-74
[8]  
Render H.(2010)On the Solution of a Nonhomogeneous Polyharmonic Equation and the Nonhomogeneous Helmholtz Equation Differ. Uravn. 46 384-395
[9]  
Karachik V.V.(2008)On an Expansion of the Almansi Type Mat. Zametki 83 370-380
[10]  
Turmetov B.Kh.(2011)Construction of Polynomial Solutions of Some Boundary Value Problems for the Poisson Equation Zh. Vychisl. Mat. Mat. Fiz. 51 1674-1694