Hyers-Ulam stability of the first-order matrix difference equations

被引:0
作者
Soon-Mo Jung
机构
[1] Hongik University,Mathematics Section, College of Science and Technology
来源
Advances in Difference Equations | / 2015卷
关键词
difference equation; matrix difference equation; recurrence; Hyers-Ulam stability; approximation; 39A45; 39B82; 39A06; 39B42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the Hyers-Ulam stability of the first-order linear homogeneous matrix difference equations x→i=Ax→i−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{x}_{i} = \mathbf{A} \vec{x}_{i-1}$\end{document} and x→i−1=Ax→i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{x}_{i-1} = \mathbf{A} \vec{x}_{i}$\end{document} for all integers i∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i \in\mathbf{Z}$\end{document}.
引用
收藏
相关论文
共 22 条
[1]  
Brzdȩk J(2010)A note on stability of a linear functional equation of second order connected with the Fibonacci numbers and Lucas sequences J. Inequal. Appl. 2010 183-189
[2]  
Jung S-M(2011)A note on stability of an operator linear equation of the second order Abstr. Appl. Anal. 2011 1-8
[3]  
Brzdȩk J(2006)Note on the nonstability of the linear recurrence Abh. Math. Semin. Univ. Hamb. 76 591-597
[4]  
Jung S-M(2008)The Hyers-Ulam stability of linear equations of higher orders Acta Math. Hung. 120 101-107
[5]  
Brzdȩk J(2005)Hyers-Ulam-Rassias stability of a linear recurrence J. Math. Anal. Appl. 309 881-889
[6]  
Popa D(2005)Hyers-Ulam stability of the linear recurrence with constant coefficients Adv. Differ. Equ. 2005 222-224
[7]  
Xu B(2006)Hyers-Ulam-Rassias stability of a linear functional equation with constant coefficients Nonlinear Funct. Anal. Appl. 11 443-449
[8]  
Brzdȩk J(1941)On the stability of the linear functional equation Proc. Natl. Acad. Sci. USA 27 1459-1463
[9]  
Popa D(2007)The Hyers-Ulam stability of nonlinear recurrences J. Math. Anal. Appl. 335 undefined-undefined
[10]  
Xu B(2010)Remarks on stability of the linear recurrence of higher order Appl. Math. Lett. 23 undefined-undefined