Design of Reverse Converters for a New Flexible RNS Five-Moduli Set {2k,2n-1,2n+1,2n+1-1,2n-1-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ 2^k, 2^n-1, 2^n+1, 2^{n+1}-1, 2^{n-1}-1 \}$$\end{document} (n Even)

被引:0
作者
Piotr Patronik
Stanisław J. Piestrak
机构
[1] Wrocław University of Technology,Department of Computer Engineering (W
[2] Université de Lorraine,4/K
关键词
Reverse converter; Residue number system (RNS); Computer arithmetic; Digital signal processing (DSP);
D O I
10.1007/s00034-017-0530-9
中图分类号
学科分类号
摘要
This paper presents the design methods of residue-to-binary (reverse) converters for the new flexible balanced five-moduli set {2k,2n-1,2n+1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ 2^k, 2^n-1, 2^n+1,$$\end{document}2n+1-1,2n-1-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n+1}-1, 2^{n-1}-1 \}$$\end{document} for the pairs of positive integers n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \ge 4}$$\end{document} (even) and any k>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k>0}$$\end{document}, which can provide the exact required dynamic range of the residue number system. This modulus set is the generalisation of the five-moduli set {2n,2n-1,2n+1,2n+1-1,2n-1-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ 2^n, 2^n-1, 2^n+1, 2^{n+1}-1, 2^{n-1}-1 \}$$\end{document} (n even) with only a single parameter, n. The reverse converter for the new modulus set is the first ever proposed. Synthesis results obtained for the 65 nm technology for all dynamic ranges from 19 to 88 bits have shown that the state-of-the-art converters available for the five-modulus sets with a single parameter n{2n,2n-1,2n+1,2n+1-1,2n-1-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{ 2^n, 2^n-1, 2^n+1, 2^{n+1}-1, 2^{n-1}-1 \}}$$\end{document} (n even) and {2n-1,2n,2n+1,2n+1+1,2n-1+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{ 2^n-1, 2^n, 2^n+1, 2^{n+1}+1, 2^{n-1}+1 \} }$$\end{document} (n odd) not only introduce from 28 to 40% larger delay but also still consume more area and power than the converters proposed here.
引用
收藏
页码:4593 / 4614
页数:21
相关论文
共 42 条
  • [1] Ananda Mohan PV(2007)RNS-to-binary converters for two four-moduli sets IEEE Trans. Circuits Syst. I 54 1245-1254
  • [2] Premkumar AB(2007), IEEE Trans. Circuits Syst. I 54 1041-1049
  • [3] Cao B(2005), IEE Proc. Comput. Digit. Tech. 152 687-696
  • [4] Chang C-H(2007), IET Proc. Comput. Digit. Tech. 1 472-480
  • [5] Srikanthan T(2004) and IEEE Trans. Circuits Syst. II 51 26-28
  • [6] Cao B(1998), IEEE Trans. Circuits Syst. II 45 446-447
  • [7] Srikanthan T(2004), IEEE Trans. Comput. 53 1211-1216
  • [8] Chang CH(2010), IEEE Trans. Circuits Syst. II 57 198-202
  • [9] Chaves R(2004)A residue-to-binary converter for a new five-moduli set Des. Autom. Embed. Syst. 9 123-139
  • [10] Sousa L(2012)Efficient reverse converters for the four-moduli sets IEEE Trans. Circuits Syst. I Regul. Pap. 59 2263-2274