An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.