Radially Symmetric Solutions of the p-Laplace Equation with Gradient Terms

被引:0
作者
Tersenov A.S. [1 ,2 ]
机构
[1] Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk
[2] Novosibirsk State University, ul. Pirogova 2, Novosibirsk
基金
俄罗斯基础研究基金会;
关键词
Dirichlet problem; gradient nonlinearity; p-Laplace equation; radially symmetric solution;
D O I
10.1134/S1990478918040178
中图分类号
学科分类号
摘要
We consider the Dirichlet problem for the p-Laplace equation with nonlinear gradient terms. In particular, these gradient terms cannot satisfy the Bernstein—Nagumo conditions. We obtain some sufficient conditions that guarantee the existence of a global bounded radially symmetric solution without any restrictions on the growth of the gradient term. Also we present some conditions on the function simulating the mass forces, which allow us to obtain a bounded radially symmetric solution under presence of an arbitrary nonlinear source. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:770 / 784
页数:14
相关论文
共 26 条
[1]  
Dall'Aglio A., Giachetti D., Segura de Leon S., Global Existence for Parabolic Problems Involving the p-Laplacian and a Critical Gradient Term, Indiana Univ. Math. J., 58, 1, pp. 1-48, (2009)
[2]  
Figueiredo D.G., Lions P.L., Nussbaum R.D., A Priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations, J. Math. Pures Appl, 61, pp. 41-63, (1982)
[3]  
Figueiredo D.G., Sanchez J., Ubilla P., Quasilinear Equations with Dependence on the Gradient, Nonlinear Anal, 71, pp. 4862-4868, (2009)
[4]  
Iturriaga L., Lorca S., Sanchez J., Existence and Multiplicity Results for the p-Laplacian with a p-Gradient Term, Nonlinear Differential Equations Appl, 15, pp. 729-743, (2008)
[5]  
Li J., Yin J., Ke Y., Existence of Positive Solutions for the p-Laplacian with p-Gradient Term, J. Math. Anal. Appl, 383, pp. 147-158, (2011)
[6]  
Montenegro M., Existence and Nonexistence of Solutions for Quasilinear Elliptic Equations, J. Math. Anal. Appl, 245, pp. 303-316, (2000)
[7]  
Nakao M., Chen C., Global Existence and Gradient Estimates for the Quasilinear Parabolic Equations ofm-Laplacian Type with a Nonlinear Convection Term, J. Differential Equations, 162, pp. 224-250, (2000)
[8]  
Ruiz D., A Priori Estimates and Existence of Positive Solutions for Strongly Nonlinear Problems, J. Differential Equations, 199, pp. 96-114, (2004)
[9]  
Tersenov A.S., The Preventive Effect of the Convection and of the Diffusion in the Blow-Up Phenomenon for Parabolic Equations, Ann. Inst. Henry PoincaréAN, 21, pp. 533-541, (2004)
[10]  
Wang X.J., Deng Y.B., Existence of Multiple Solutions to Nonlinear Elliptic Equations of Nondivergence Form, J. Math. Anal. Appl, 189, pp. 617-630, (1995)