On the nullity of conformal Killing graphs in foliated Riemannian spaces

被引:0
作者
Henrique F. de Lima
Joseilson R. de Lima
Marco A. L. Velásquez
机构
[1] Universidade Federal de Campina Grande,Departamento de Matemática e Estatística
来源
Aequationes mathematicae | 2014年 / 87卷
关键词
53C42; 53C12; Conformal Killing vector fields; conformal Killing graphs; -th mean curvatures; totally geodesic hypersurfaces; index ofminimum relative nullity;
D O I
暂无
中图分类号
学科分类号
摘要
We deal with entire conformal Killing graphs, that is, graphs constructed through the flow generated by a complete conformal Killing vector field V on a Riemannian space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}}$$\end{document}, and which are defined over an integral leaf of the foliation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V^\bot {\rm of} \overline{M}}$$\end{document} orthogonal to V. Under a suitable restriction on the norm of the gradient of the function z which determines such a graph Σ(z), we establish sufficient conditions to ensure that Σ(z) is totally geodesic. Afterwards, when the ambient space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}}$$\end{document} has constant sectional curvature, we obtain lower estimates for the index of minimum relative nullity of Σ(z).
引用
收藏
页码:285 / 299
页数:14
相关论文
共 30 条
[1]  
Alexandrov A.D.(1956)Uniqueness theorems for surfaces in the large I Vestinik Leiningrad Univ. 11 5-17
[2]  
Alexandrov A.D.(1962)A characteristic property of spheres Ann. Mat. Pura Appl. 58 303-315
[3]  
Alías L.J.(2007)A Bernstein-type theorem for Riemannian manifolds with a Killing field Ann. Glob. Anal. Geom. 31 363-373
[4]  
Dajczer M.(2013)Hypersurfaces of constant higher order mean curvature in warped products Trans. Am. Math. Soc. 365 591-621
[5]  
Ripoll J.B.(2006)Constant higher order mean curvature hypersufaces in Riemannian spaces J. Inst. Math. Jussieu 5 527-562
[6]  
Alías L.J.(2010)The Newton transformation and new integral formulae for foliated manifolds Ann. Global Anal. Geom. 37 103-111
[7]  
Impera D.(2009)Compact graphs over a sphere of constant second order mean curvature Proc. Am. Math. Soc. 137 3105-3114
[8]  
Rigoli M.(1910)Sur les surfaces d’efinies au moyen de leur courboure moyenne ou totale Ann. Ec. Norm. Sup. 27 233-256
[9]  
Alías L.J.(2006)On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds J. Geom. Phys. 56 1144-1174
[10]  
de Lira J.H.(2011)The geometry of closed conformal vector fields on Riemannian spaces Bull. Brazilian Math. Soc. 42 277-300