Homographic solutions in the planar n + 1 body problem with quasi-homogeneous potentials

被引:0
作者
Mercedes Arribas
Antonio Elipe
Tilemahos Kalvouridis
Manuel Palacios
机构
[1] Universidad de Zaragoza,Grupo de Mecánica Espacial and Instituto Universitario de Matemáticas y Aplicaciones
[2] National Technical University of Athens,Department of Mechanics
来源
Celestial Mechanics and Dynamical Astronomy | 2007年 / 99卷
关键词
Ring ; -body problem; Central configurations; Homographic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for generalized forces which are function of the mutual distance, the ring n + 1 configuration is a central configuration. Besides, we show that it is a homographic solution. We apply the above results to quasi-homogeneous potentials.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 20 条
[1]  
Arribas M.(2004)Bifurcations and equilibria in the extended N-body ring problem Mech. Res. Comm. 31 1-8
[2]  
Elipe A.(1983)Regularization and linearization of the equations of motion in central force-field Celest. Mech. 31 73-80
[3]  
Cid R.(1985)On the motion of three rigid-bodies. Central configurations Celest. Mech. 37 113-126
[4]  
Ferrer S.(1992)On the restricted three-body problem with generalized forces Astrophys. Space Sci. 188 257-269
[5]  
Elipe A.(1985)On the equilibrium solution in the circular planar restricted three rigid bodies problem Celest. Mech. 37 59-70
[6]  
Cid R.(1999)A planar case of the Astrophys. Space Sci. 260 309-325
[7]  
Elipe A.(2001) + 1 body problem: the ring problem Celest. Mech. Dyn. Astron. 80 133-144
[8]  
Elipe A.(2005)Zero velocity surface in the three-dimensional ring problem of Int. J. Bifurc. Chaos 15 2681-2688
[9]  
Elipe A.(1998) + 1 bodies Baltic Astron. 7 637-651
[10]  
Ferrer S.(1999)Numerical investigation of periodic motion in the three-dimensional ring problem of Physica Scripta. 60 483-490