Effect of the Thermomechanical Treatment Conditions on the Consolidation, the Structure, and the Mechanical Properties of Bulk Al–Mg–C Nanocomposites

被引:15
作者
Aborkin A.V. [1 ]
Alymov M.I. [2 ]
Sobol’kov A.V. [1 ]
Khor’kov K.S. [1 ]
Babin D.M. [1 ]
机构
[1] Vladimir State University, ul. Gor’kogo 87, Vladimir
[2] Insitute of Structural Macrokinetics and Materials Sciences, Russian Academy of Sciences, Chernogolovka, 142432, Moscow oblast
基金
俄罗斯基础研究基金会;
关键词
aluminum; consolidation; microhardness; nanocomposite powder; nanocrystalline graphite; specific strength; structure–phase composition; ultimate strength;
D O I
10.1134/S0036029518070029
中图分类号
学科分类号
摘要
Abstract: The effect of the conditions of sintering under pressure (temperature, pressure) of mechanically synthesized Al–Mg–C nanocomposite powders on consolidation and the evolution of the structure–phase composition has been studied. The data on the mechanical properties of the prepared bulk nanocomposites are presented. It is found that the hardening of the material results from the joint action of the contributions of the nanostructuring of the matrix material, precipitation hardening due to the precipitation of the Al4C3 phase, and precipitation hardening with nanocrystalline graphite particles; i.e., the hardening obeys the Hall–Petch and Orowan mechanisms. The specific strength of the samples is dependent on the consolidation temperature and the graphite content in a charge and varies within the range 15.7–24.5 km. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:625 / 632
页数:7
相关论文
共 20 条
  • [1] Wang J., Li Z., Fan G., Pan H., Chen Z., Zhang D., Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Materialia, 66, pp. 594-597, (2012)
  • [2] Bartolucci S.F., Paras J., Rafiee M.A., Rafiee J., Lee S., Kapoor S., Koratkar N., Graphene–aluminum nanocomposites, Mater. Sci. Eng. A, 528, pp. 7933-7937, (2011)
  • [3] Zhang H., Xu C., Xiao W., Ameyama K., Ma C., Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion, Mater. Sci. Eng. A, 658, pp. 8-15, (2016)
  • [4] Kwon H., Mondal J., al Ogab K.A., Sammelselg V., Takamichi M., Kawaski A., Leparoux M., Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy, J. Alloys Compd., 698, pp. 807-813, (2017)
  • [5] Perez-Bustamante R., Estrada-Guel I., Antumez-Flores W., Miki-Yoshida M., Ferreira P.J., Martinez-Sanchez R., Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes, J. Alloys Compd., 450, pp. 323-326, (2008)
  • [6] Majid M., Majzoobi G.H., Noozad G.A., Reihani A., Mortazavi S.Z., Gorji M.S., Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion, Rare Met., 31, pp. 372-378, (2012)
  • [7] Bradbury C.R., Gomon J.K., Kollo L., Kwon H., Leparoux M., Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites, J. Alloys Compd., 585, pp. 362-367, (2014)
  • [8] Perez-Bustamante R., Gonzalez-Ibarra M.J., Gonzalez-Cantu J., Estrada-Guel I., Herrera-Ramirez J.M., Miki-Yoshida M., Martinez-Sanchez R., AA2024-CNTs composites by milling process after T6-temper condition, J. Alloys Compd, 536S, pp. 17-20, (2012)
  • [9] Kallip K., M. Leparoux, K. A. al Ogab, S. Clerc, G. Deguilhem, Y. Arroyo, and H. Kwon, “Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites, J. Alloys Compd., 646, pp. 710-718, (2015)
  • [10] Aborkin A.V., Elkin A.I., Babin D.M., Features of the Variation of Energy-Power Parameters, Temperature, and Hydrostatic Pressure under the Continuous Extrusion of a Noncompact Aluminum Material, Russian Journal of Non-Ferrous Metals, 57, 1, pp. 14-18, (2016)