Transient simulation of an electrical rotating machine achieved through model order reduction

被引:0
作者
Montier L. [1 ,2 ]
Henneron T. [3 ]
Clénet S. [1 ]
Goursaud B. [2 ]
机构
[1] L2EP - Laboratoire d’Electrotechnique et d’Electronique de Puissance, Arts et Métiers ParisTech, 8 Boulevard Louis XIV, Lille
[2] THEMIS, EDF R&D, 1 Avenue du Général de Gaulle, Clamart
[3] L2EP - Laboratoire d’Electrotechnique et d’Electronique de Puissance, Univ. Lille, Laboratoire L2EP, Cité Scientifique, Bâtiment P2, Villeneuve d’Ascq
关键词
Discrete empirical interpolation method; Finite element method; Model order reduction; Overlapping finite element method; Proper orthogonal decompostion; Synchronous machine;
D O I
10.1186/s40323-016-0062-z
中图分类号
学科分类号
摘要
Model order reduction (MOR) methods are more and more applied on many different fields of physics in order to reduce the number of unknowns and thus the computational time of large-scale systems. However, their application is quite recent in the field of computational electromagnetics. In the case of electrical machine, the numerical model has to take into account the nonlinear behaviour of ferromagnetic materials, motion of the rotor, circuit equations and mechanical coupling. In this context, we propose to apply the proper orthogonal decomposition combined with the (Discrete) empirical interpolation method in order to reduce the computation time required to study the start-up of an electrical machine until it reaches the steady state. An empirical offline/online approach based on electrical engineering is proposed in order to build an efficient reduced model accurate on the whole operating range. Finally, a 2D example of a synchronous machine is studied with a reduced model deduced from the proposed approach. © 2016, The Author(s).
引用
收藏
相关论文
共 50 条
[21]   A multi-scale model order reduction scheme for transient modelling of periodic structures [J].
Droz, Christophe ;
Boukadia, Regis ;
Desmet, Wim .
JOURNAL OF SOUND AND VIBRATION, 2021, 510
[22]   Accelerating crack growth simulations through adaptive model order reduction [J].
Rocha, Iuri B. C. M. ;
van der Meer, Frans P. ;
Mororo, Luiz A. T. ;
Sluys, Lambertus J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (10) :2147-2173
[23]   Advances of Model Order Reduction Research in Large-scale System Simulation [J].
SUN Dao-heng .
厦门大学学报(自然科学版), 2002, (S1) :174-174
[24]   Model order reduction for dynamic simulation of slender beams undergoing large rotations [J].
A. K. Gaonkar ;
S. S. Kulkarni .
Computational Mechanics, 2017, 59 :809-829
[25]   Model order reduction for dynamic simulation of slender beams undergoing large rotations [J].
Gaonkar, A. K. ;
Kulkarni, S. S. .
COMPUTATIONAL MECHANICS, 2017, 59 (05) :809-829
[26]   Model order reduction method for the finite-element simulation of inhomogeneous waveguides [J].
Schultschik, Alwin ;
Farle, Ortwin ;
Dyczij-Edlinger, Romanus .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :1394-1397
[27]   Model order reduction for moving objects: fast simulation of vibration energy harvesters [J].
Sato, Takahiro ;
Sato, Yuki ;
Igarashi, Hajime .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2015, 34 (05) :1623-1636
[28]   Krylov Subspace Based Model Reduction Method for Transient Simulation of Active Distribution Grid [J].
Wang, Chengshan ;
Yu, Hao ;
Li, Peng ;
Ding, Chengdi ;
Sun, Chongbo ;
Guo, Xiaolong ;
Zhang, Fei ;
Zhou, Yilin ;
Yu, Zhaorong .
2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
[29]   Reactor physics fast calculation method based on model order reduction and machine learning [J].
Zhao, Chen ;
Zhang, Qinyi ;
Zhang, Bin ;
Wang, Jiangyu ;
Liu, Jiayi ;
Wang, Lianjie ;
Xia, Bangyang ;
Chai, Xiaoming ;
Peng, Xingjie .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2025, 57 (10)
[30]   Parametric Harmonic Balance Analysis of a Rotating Component by the Projection-based Model-order Reduction [J].
Kang, Seung-Hoon ;
Lee, Sangmin ;
Hwang, Minho ;
Cho, Haeseong ;
Kim, Yongse ;
Shin, Sangjoon .
JOURNAL OF THE KOREAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2024, 52 (06) :431-439