“Large” conformal metrics of prescribed Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document}-curvature in the negative case

被引:0
作者
Luca Galimberti
机构
[1] ETH-Zürich,Departement Mathematik
关键词
Nonlinear and geometric analysis; Variational methods; -curvature; 53A30; 58E30;
D O I
10.1007/s00030-017-0442-1
中图分类号
学科分类号
摘要
Given a compact and connected four dimensional smooth Riemannian manifold (M,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g_0)$$\end{document} with kP:=∫MQg0dVg0<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_P := \int _M Q_{g_0} dV_{g_0} <0$$\end{document} and a smooth non-constant function f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} with maxp∈Mf0(p)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{p\in M}f_0(p)=0$$\end{document}, all of whose maximum points are non-degenerate, we assume that the Paneitz operator is nonnegative and with kernel consisting of constants. Then, we are able to prove that for sufficiently small λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} there are at least two distinct conformal metrics gλ=e2uλg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\lambda =e^{2u_\lambda }g_0$$\end{document} and gλ=e2uλg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^\lambda =e^{2u^\lambda }g_0$$\end{document} of Q-curvature Qgλ=Qgλ=f0+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g_\lambda }=Q_{g^\lambda }=f_0+\lambda $$\end{document}. Moreover, by means of the “monotonicity trick” in a way similar to [9], we obtain crucial estimates for the “large” solutions uλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\lambda $$\end{document} which enable us to study their “bubbling behavior” as λ↓0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \downarrow 0$$\end{document}.
引用
收藏
相关论文
共 44 条
  • [1] Adams D(1988)A sharp inequality of J. Moser for higher order derivatives Ann. Math. 128 385-398
  • [2] Adimurthi FR(2006)Concentration phenomena for Liouville’s equation in dimension four J. Eur. Math. Soc. 8 171-180
  • [3] Struwe M(1959)The Ann. Sc. Norm. Sup. tome 13 405-448
  • [4] Agmon S(1970) approach to the Dirichlet problem J. Differ. Geom. 4 383-424
  • [5] Aubin T(2006)Métriques Riemanniennes et Courbure Calc. Var. 27 75-104
  • [6] Baird P(1971)Q-curvature flow on 4-manifolds J. Differ. Geom. 5 325-332
  • [7] Fardoun A(2000)Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds Bull. Sci. Math. 124 239-248
  • [8] Regbaoui R(2015)Prescribed scalar curvature on a Comm. Math. Helv. 90 407-428
  • [9] Berger Melvyn S(1985) compact Riemannian manifold of dimension two Math. Scand. 57 293-345
  • [10] Bismuth S(2005)“Large” conformal metrics of prescribed Gauss curvature on surfaces of higher genus Rend. Circ. Matem. Palermo 75 11-55