Compound Poisson Approximations in ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document}-norm for Sums of Weakly Dependent Vectors

被引:0
作者
V. Čekanavičius
P. Vellaisamy
机构
[1] Vilnius University,Department of Mathematics and Informatics
[2] Indian Institute of Technology Bombay,Department of Mathematics
关键词
Compound Poisson distribution; Expansion in the exponent; norm; Local norm; Multivariate distribution; Primary 62E17; Secondary 60F25;
D O I
10.1007/s10959-020-01042-9
中图分类号
学科分类号
摘要
The distribution of the sum of 1-dependent lattice vectors with supports on coordinate axes is approximated by a multivariate compound Poisson distribution and by signed compound Poisson measure. The local and ℓα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\alpha $$\end{document}-norms are used to obtain the error bounds. The Heinrich method is used for the proofs.
引用
收藏
页码:2241 / 2264
页数:23
相关论文
共 50 条