Schwarzian derivative and convexity of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}

被引:0
作者
Somya Malik
V. Ravichandran
机构
[1] National Institute of Technology,Department of Mathematics
关键词
Univalence; Convexity; Starlikeness; Subordination; Schwarzian derivative; 30C80; 30C45;
D O I
10.1007/s41478-022-00448-4
中图分类号
学科分类号
摘要
For 0⩽α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\leqslant \alpha <1$$\end{document}, a normalised analytic function f defined on the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} is convex of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} if ReQCV(f)>α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Re}\,}}Q_{CV}(f)>\alpha$$\end{document}, where QCV(f):=1+zf′′(z)/f′(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{CV}(f):=1+zf''(z)/f'(z)$$\end{document}. We find numerous sufficient conditions for the function f to be a convex function of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} in terms of QCV(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{CV}(f)$$\end{document} and QSD(f):=z2{f,z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{SD}(f):=z^2\{f,z\}$$\end{document}, where {f,z}:=(f′′(z)/f′(z))′-(f′′(z)/f′(z))2/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f,z\}:=(f''(z)/f'(z))'-(f''(z)/f'(z))^2/2$$\end{document} is the Schwarzian derivative of f. We obtain these conditions by using the theory of second order differential subordination.
引用
收藏
页码:201 / 228
页数:27
相关论文
共 44 条
[1]  
Ali RM(2008)Subordination and superordination on Schwarzian derivatives Journal of Inequalities and Applications 2008 197-204
[2]  
Ravichandran V(2017)Schwarzian derivative and Janowski convexity Studia Universitatis Babeş-Bolyai Mathematica 62 427-437
[3]  
Seenivasagan N(2022)Pre-Schwarzian and Schwarzian derivatives of logharmonic mappings Monatshefte Fur Mathematik 15 1475-1484
[4]  
Bohra N(2015)Differential subordination of harmonic mean Computational Methods and Function Theory 48 348-141
[5]  
Ravichandran V(2018)Differential subordination of a harmonic mean to a linear function Rocky Mountain Journal of Mathematics 10 130-106
[6]  
Bravo V(2018)Sharp bounds on the higher order Schwarzian derivatives for Janowski classes Symmetry 235 93-460
[7]  
Hernandez R(1999)On differential subordinations related to convex functions Journal of Mathematical Analysis and Applications 32 449-305
[8]  
Ponnusamy S(2017)Starlikeness and Schwarzian derivatives of higher order of analytic functions Communications of the Korean Mathematical Society 36 289-195
[9]  
Venegas O(2011)Schwarzian derivatives of convex mappings Annales Academiæ Scientiarum Fennicæ Mathematica 65 185-551
[10]  
Cho NE(1978)Second-order differential inequalities in the complex plane Journal of Mathematical Analysis and Applications 32 545-704