Infinitely many solutions for a differential inclusion problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} involving p(x)-Laplacian and oscillatory terms

被引:0
作者
Bin Ge
Qing-Mei Zhou
Xiao-Ping Xue
机构
[1] Harbin Engineering University,Department of Applied Mathematics
[2] Northeast Forestry University,Library
[3] Harbin Institute of Technology,Department of Mathematics
关键词
35J70; 35R70; 49J52; 49J53; (; )-Laplacians; Differential inclusion; Variational method; Infinitely many solutions;
D O I
10.1007/s00033-012-0192-1
中图分类号
学科分类号
摘要
In this paper, we consider the differential inclusion in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} involving the p(x)-Laplacian of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\begin{array}{lll}-\triangle_{p(x)} u+V(x)|u|^{p(x)-2}u\in \partial F(x,u(x)),\;\;{\rm in}\;\;\mathbb{R}^N,\quad\quad\quad\quad\quad\quad ({\rm P})\end{array}}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p: \mathbb{R}^N \to {\mathbb{R}}}$$\end{document} is Lipschitz continuous function satisfying some given assumptions. The approach used in this paper is the variational method for locally Lipschitz functions. Under suitable oscillatory assumptions on the potential F at zero or at infinity, we show the existence of infinitely many solutions of (P). We also establish a Bartsch-Wang type compact embedding theorem for variable exponent spaces.
引用
收藏
页码:691 / 711
页数:20
相关论文
共 42 条
[1]  
Chang K.C.(1981)Variational methods for nondifferentiable functionals and their applications to partial differential equations J. Math. Anal. Appl. 80 102-129
[2]  
Kourogenis N.(2000)Nonsmooth critical point theory and nonlinear elliptic equations at resonance J. Aust. Math. Soc. ser. A. 69 245-271
[3]  
Papageorgiou N.S.(2006)Two nontrivial critical points for nonsmooth functionals via local linking and applications J. Global. Optim. 34 219-244
[4]  
Kandilakis D.(2000)A general variational principle and some of its applications J. Comput. Appl. Math. 113 401-410
[5]  
Kourogenis N.(2002)Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the J. Differ. Equ. 182 108-120
[6]  
Papageorgiou N.S.(2010)-Laplacian Nonlinear Anal. 73 2566-2579
[7]  
Ricceri B.(2009)On superlinear Nonlinear Anal. 71 1116-1123
[8]  
Marano S.(2010)( Nonlinear Anal. 73 622-633
[9]  
Motreanu D.(2006))-Laplacian equations in J. Differ. Equ. 220 511-530
[10]  
Alves C.O.(1987)Infinitely many solutions for a differential inclusion problem in Math. USSR. Izv. 9 33-66