In this paper, polycyclotriphosphazene coated carbon nanotubes (PZS-OH/CNT) composite material has been synthesized via a facial method. The prepared PZS-OH/CNT was characterized by FTIR, BET, zeta potential and SEM. The material was investigated as an adsorbent for the adsorption towards U(VI) from aqueous solutions. Several parameters like solution pH, contact time and temperature were used to evaluate the sorption efficiency. The results indicated that the adsorption capacity of uranium on PZS-OH/CNT was improved from 41.48 mg g−1 for CNT to 338.98 mg g−1 due to the presence of functional groups on PZS-OH/CNT. The U(VI) sorption on PZS-OH/CNT was well fitted to the Langmuir adsorption isotherm and pseudo-second kinetics models. The thermodynamic parameters (ΔH, ΔS and ΔG) showed the U(VI) adsorption on CNT and PZS-OH/CNT was endothermic and spontaneous in nature.