共 11 条
- [1] On the distribution of the residues of small multiplicative subgroups of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{F}_p $$\end{document} Israel Journal of Mathematics, 2009, 172 (1) : 61 - 74
- [2] On the Average Value of a Generalized Pillai Function over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{Z} $\end{document} [i] in the Arithmetic Progression Ukrainian Mathematical Journal, 2013, 65 (6) : 835 - 846
- [3] A note on AP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AP_3$$\end{document}-covering sequences Periodica Mathematica Hungarica, 2021, 83 (1) : 67 - 70
- [4] New families of Fibonacci and Lucas octonions with Q-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q-$$\end{document}integer components Indian Journal of Pure and Applied Mathematics, 2021, 52 (1) : 231 - 240
- [5] On wavelets Kantorovich (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Baskakov operators and approximation properties Journal of Inequalities and Applications, 2023 (1)
- [6] A basic problem of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Bernstein-type operators Journal of Inequalities and Applications, 2017 (1)
- [7] On the convergence of Lupaş (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Bernstein operators via contraction principle Journal of Inequalities and Applications, 2019 (1)
- [8] The convergence of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Bernstein operators for the Cauchy kernel with a pole via divided difference Journal of Inequalities and Applications, 2019 (1)
- [9] On the variant Qn!=Px\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\left(n!\right)=P\left(x\right)$$\end{document} of the Brocard–Ramanujan Diophantine equation The Ramanujan Journal, 2024, 65 (4) : 1791 - 1798
- [10] Approximation Properties of the q-Balázs–Szabados Complex Operators in the Case q≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document} Computational Methods and Function Theory, 2016, 16 (4) : 567 - 583