Finitely-Generated Projective Modules over the θ-Deformed 4-Sphere

被引:0
作者
Mira A. Peterka
机构
[1] University of California,Department of Mathematics
来源
Communications in Mathematical Physics | 2013年 / 321卷
关键词
Modulus Space; Vector Bundle; Line Bundle; Toeplitz Operator; Isomorphism Class;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the “θ-deformed spheres”\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(S^{3}_{\theta})}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(S^{4}_{\theta})}$$\end{document}, where θ is any real number. We show that all finitely-generated projective modules over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(S^{3}_{\theta})}$$\end{document} are free, and that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(S^{4}_{\theta})}$$\end{document} has the cancellation property. We classify and construct all finitely-generated projective modules over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(S^{4}_{\theta})}$$\end{document} up to isomorphism. An interesting feature is that if θ is irrational then there are nontrivial “rank-1” modules over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(S^{4}_{\theta})}$$\end{document}. In that case, every finitely-generated projective module over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(S^{4}_{\theta})}$$\end{document} is a sum of a rank-1 module and a free module. If θ is rational, the situation mirrors that for the commutative case θ = 0.
引用
收藏
页码:577 / 603
页数:26
相关论文
共 49 条
[1]  
Atiyah M.F.(1978)Construction of instantons Phys. Lett. A 65 185-187
[2]  
Hitchin N.J.(2003)Quantum even spheres Commun. Math. Phys. 243 449-459
[3]  
Drinfel′d V.G.(2011) from Poisson double suspension Rev. Math. Phys. 23 261-307
[4]  
Manin Yu.I.(1996)The ADHM construction of instantons on noncommutative spaces Commun. Math. Phys. 182 155-176
[5]  
Bonechi F.(2002)Gravity coupled with matter and the foundation of non-commutative geometry Commun. Math. Phys. 230 539-579
[6]  
Ciccoli N.(2008)Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples Commun. Math. Phys. 281 23-127
[7]  
Tarlini M.(2001)Noncommutative finite dimensional manifolds. II. Moduli space and structure of noncommutative 3-spheres Commun. Math. Phys. 221 141-159
[8]  
Brain S.(2001)Noncommutative manifolds, the instanton algebra and isospectral deformations Commun. Math. Phys. 221 161-168
[9]  
van Suijlekom W.D.(1984)Instantons on the quantum 4-spheres Commun. Math. Phys. 93 453-460
[10]  
Connes A.(2008)Instantons and geometric invariant theory Math. Ann. 341 825-844