Spaces of Quasi-Periodic Functions and Oscillations in Differential Equations

被引:0
作者
J. Blot
D. Pennequin
机构
[1] Université de Paris 1 Panthéon-Sorbonne,CERMSEM
来源
Acta Applicandae Mathematica | 2001年 / 65卷
关键词
quasi-periodic functions; ordinary differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
We build spaces of q.p. (quasi-periodic) functions and we establish some of their properties. They are motivated by the Percival approach to q.p. solutions of Hamiltonian systems. The periodic solutions of an adequatez partial differential equation are related to the q.p. solutions of an ordinary differential equation. We use this approach to obtain some regularization theorems of weak q.p. solutions of differential equations. For a large class of differential equations, the first theorem gives a result of density: a particular form of perturbated equations have strong solutions. The second theorem gives a condition which ensures that any essentially bounded weak solution is a strong one.
引用
收藏
页码:83 / 113
页数:30
相关论文
共 23 条
[1]  
Avantaggiati A.(1993)A functional approach to Rend. Math. Appl. (7) 13 199-228
[2]  
Bruno G.(1995)-a.p. spaces and Nonlinear Anal. 25 61-87
[3]  
Iannacci R.(1992) Fourier expansions Acad. Roy. Belg. Bull. Cl. Sci. (6) 3 173-186
[4]  
Avantaggiati A.(1995)The Hausdorff-Young theorem for almost periodic functions and some applications Comm. Appl. Nonlinear Anal. 2 79-106
[5]  
Bruno G.(1996)Solutions presque-périodiques des équations différentielles du type pendule forcé Comm. Appl. Nonlinear Anal. 3 25-49
[6]  
Iannacci R.(1989)A new method for large quasiperiodic nonlinear oscillations with fixed frequencies for the nondissipative conservative systems, (I) Ann. Sci. Math. Québec 13 7-32
[7]  
Belley J.-M.(1991)A new method for large quasiperiodic nonlinear oscillations with fixed frequencies for the nondissipative second order conservative systems of second type Notes C.R. Acad. Sci. Paris Série I 313 487-490
[8]  
Fournier G.(1991)Une approche variationnelle des orbites quasi-périodiques des systèmes hamiltoniens Ann. Fac. Sci. Toulouse 13 351-363
[9]  
Saadi Drissi K.(1993)Une méthode hilbertienne pour les trajectoires presque-périodiques Funkc. Ekv. 36 235-250
[10]  
Berger M. S.(1994)Almost periodic oscillations of forced second order hamiltonian systems Bull. Soc. Math. France 122 285-304