A class of integral operators on mixed norm spaces in the unit ball

被引:0
作者
Songxiao Li
机构
[1] Shantou University,Department of Mathematics
[2] JiaYing University,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2007年 / 57卷
关键词
integral operator; mixed norm space; boundedness;
D O I
暂无
中图分类号
学科分类号
摘要
This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball.
引用
收藏
页码:1013 / 1023
页数:10
相关论文
共 19 条
[1]  
Benedek A.(1961)The spaces Duke Math. J. 28 301-324
[2]  
Panzone R.(1990) with mixed norm Proc. Am. Math. Soc. 108 127-136
[3]  
Choe B. R.(1974)Projections, the weighted Bergman spaces, and the Bloch space Indiana Univ. Math. J. 24 593-602
[4]  
Forelli F.(1988)Projections on spaces of holomorphic functions in balls Proc. Am. Math. Soc. 104 1171-1180
[5]  
Rudin W.(1979)Mixed-norm generalizations of Bergman space and duality Indiana Univ. Math. J 28 495-499
[6]  
Gadbois S.(2006)A new look at a theorem of Forelli and Rudin Integr. Equ. Oper. Theory 56 71-82
[7]  
Kolaski C.(2002)A class of integral operators on the unit ball of ℂ Proc. Am. Math. Soc. 130 2363-2367
[8]  
Kurens O.(1997)Boundedness of the Bergman type operators on mixed norm space Chin. Ann. Math., Ser. B 18 265-276
[9]  
Zhu K. H.(1999)Bergman type operator on mixed norm spaces with applications Sci. China, Ser. A 42 1286-1291
[10]  
Liu Y. M.(1998)Forelli-Rudin type theorem on pluriharmonic Bergman spaces with small exponent Sci. China, Ser. A 41 225-231