Riemann–Hilbert problems of a six-component fourth-order AKNS system and its soliton solutions

被引:0
作者
Wen-Xiu Ma
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] University of South Florida,Department of Mathematics and Statistics
[3] Shandong University of Science and Technology,College of Mathematics and Systems Science
[4] Shanghai University of Electric Power,College of Mathematics and Physics
[5] North-West University,Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling
来源
Computational and Applied Mathematics | 2018年 / 37卷
关键词
Soliton hierarchy; Riemann–Hilbert problem; Soliton solution; 35Q53; 37K10; 35B15;
D O I
暂无
中图分类号
学科分类号
摘要
Associated with a 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} matrix spectral problem, a six-component AKNS soliton hierarchy is presented, together with the first three nonlinear soliton systems. From an equivalent spectral problem, a kind of Riemann–Hilbert problems is formulated for a six-component system of fourth-order AKNS equations in the resulting AKNS hierarchy. Soliton solutions to the considered system of coupled fourth-order AKNS equations are worked out from a reduced Riemann–Hilbert problem where an identity jump matrix is taken.
引用
收藏
页码:6359 / 6375
页数:16
相关论文
共 76 条
[1]  
Ablowitz MJ(1974)The inverse scattering transform-Fourier analysis for nonlinear problems Stud Appl Math 53 249-315
[2]  
Kaup DJ(2012)An integrable decomposition of the Manakov equation Comput Appl Math 31 1-18
[3]  
Newell AC(2015)Generalised East Asian J Appl Math 5 256-272
[4]  
Segur H(2016)-dimensional super MKdV hierarchy for integrable systems in soliton theory Anal Math Phys 6 199-209
[5]  
Chen ST(1982)Generalized fractional supertrace identity for Hamiltonian structure of NLS-MKdV hierarchy with self-consistent sources Sov Math Dokl 23 457-462
[6]  
Zhou RG(2012)Equations of Korteweg–de Vries type, and simple Lie algebras J Phys A Math Theor 45 195201-3
[7]  
Dong HH(1983)The unified method: I. Nonlinearizable problems on the half-line Phys Lett A 95 1-72
[8]  
Zhao K(2016)Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique Wave Motion 60 62-159
[9]  
Yang HW(2018)Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation Appl Math Comput 332 148-490
[10]  
Li YQ(1968)Riemann–Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg–de Vries equation on the half-line Commun Pure Appl Math 21 467-123