Block-Diagonal Similarity and Semiscalar Equivalence of Matrices

被引:0
作者
Shavarovskii B.Z. [1 ]
机构
[1] Pidstyhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences, Lviv
关键词
D O I
10.1007/s10958-017-3280-0
中图分类号
学科分类号
摘要
We determine the canonical form of a complex matrix B with respect to the similarity B → S−1BS, where S is the direct sum of invertible upper triangular Toeplitz blocks. The conditions necessary and sufficient for the semiscalar equivalence of one type of polynomial matrices are established. © 2017, Springer Science+Business Media New York.
引用
收藏
页码:35 / 49
页数:14
相关论文
共 13 条
[1]  
Voevodin V.V., Kuznetsov Y.A., Matrices and Calculus [in Russian], (1984)
[2]  
Gantmakher F.R., Theory of Matrices [in Russian], (1988)
[3]  
On sufficient conditions for the existence of a unitary congruence transformation of a given complex matrix into a real one, J. Math. Sci., (2010)
[4]  
Kazimirs'kii P.S., Decomposition of Matrix Polynomials into Factors [in Ukrainian], (1981)
[5]  
Kazimirs'kii P.S., Petrychkovych V.M., On the equivalence of polynomial matrices, Theoretical and Applied Problems of Algebra and Differential Equations [in Ukrainian], pp. 61-66, (1977)
[6]  
Marcus M., Minc H., A Survey of Matrix Theory and Matrix Inequalities, (1964)
[7]  
Horn R.A., Johnson C.R., Matrix Analysis, (1985)
[8]  
Shavarovskii B.Z., Semiscalar equivalence of polynomial matrices and triangular similarity of numerical matrices, Prykl. Probl. Mekh. Mat., Issue, 11, pp. 63-69, (2013)
[9]  
Un théorème de factorisation et son application à la représentation des systèmes cyclique causaux, Acad. Sci. Paris. Sér. 1. Math., (1982)
[10]  
Bart H., Thijsse G.P.A., Similarity invariants for pair of upper triangular Toeplitz matrices, Lin. Algebra Appl., 147, pp. 17-44, (1991)