Improved Merlin–Arthur Protocols for Central Problems in Fine-Grained Complexity

被引:0
|
作者
Shyan Akmal
Lijie Chen
Ce Jin
Malvika Raj
Ryan Williams
机构
[1] MIT,
[2] UC Berkeley,undefined
来源
Algorithmica | 2023年 / 85卷
关键词
Merlin–Arthur protocols; fine-grained complexity; proof systems; algebraic methods;
D O I
暂无
中图分类号
学科分类号
摘要
In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:Certifying that a list of n integers has no 3-SUM solution can be done in Merlin–Arthur time O~(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n)$$\end{document}. Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in O~(n1.5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n^{1.5})$$\end{document} time (that is, there is a proof system with proofs of length O~(n1.5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n^{1.5})$$\end{document} and a deterministic verifier running in O~(n1.5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n^{1.5})$$\end{document} time).Counting the number of k-cliques with total edge weight equal to zero in an n-node graph can be done in Merlin–Arthur time O~(n⌈k/2⌉)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(n^{\lceil k/2\rceil })$$\end{document} (where k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3$$\end{document}). For odd k, this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in an m-edge graph can be done in Merlin–Arthur time O~(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(m)$$\end{document}. Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count k-cliques in unweighted graphs, and had worse running times for small k.Computing the All-Pairs Shortest Distances matrix for an n-node graph can be done in Merlin–Arthur time O~(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n^2)$$\end{document}. Note this is optimal, as the matrix can have Ω(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n^2)$$\end{document} nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an O~(n2.94)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n^{2.94})$$\end{document} nondeterministic time algorithm.Certifying that an n-variable k-CNF is unsatisfiable can be done in Merlin–Arthur time 2n/2-n/O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n/2 - n/O(k)}$$\end{document}. We also observe an algebrization barrier for the previous 2n/2·poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n/2}\cdot \textrm{poly}(n)$$\end{document}-time Merlin–Arthur protocol of R. Williams [CCC’16] for #\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#$$\end{document}SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for k-UNSAT running in 2n/2/nω(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n/2}/n^{\omega (1)}$$\end{document} time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time 24n/5·poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{4n/5}\cdot \textrm{poly}(n)$$\end{document}. Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in 22n/3·poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{2n/3}\cdot \textrm{poly}(n)$$\end{document} time. Due to the centrality of these problems in fine-grained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution to n integers can be done in Merlin–Arthur time 2n/3·poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n/3}\cdot \textrm{poly}(n)$$\end{document}, improving on the previous best protocol by Nederlof [IPL 2017] which took 20.49991n·poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{0.49991n}\cdot \textrm{poly}(n)$$\end{document} time.
引用
收藏
页码:2395 / 2426
页数:31
相关论文
共 21 条
  • [21] Fredman's Trick Meets Dominance Product: Fine-Grained Complexity of Unweighted APSP, 3SUM Counting, and More
    Chan, Timothy M.
    Williams, Virginia Vassilevska
    Xu, Yinzhan
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 419 - 432