On the Hilbert function of zero-dimensional schemes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb P}^1 \times {\mathbb P}^1}$$\end{document}

被引:0
作者
Paola Bonacini
Lucia Marino
机构
[1] Università degli Studi di Catania,
关键词
Hilbert function; Points; ACM; Not ACM; 13H10; 13D40;
D O I
10.1007/s13348-010-0004-x
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q = {\mathbb P}^1 \times {\mathbb P}^1}$$\end{document} and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X\subset Q}$$\end{document} be a zero-dimensional scheme. The results in this paper give the possibility of computing, under certain hypotheses, the Hilbert function of a zero-dimensional scheme in Q that is not ACM. In particular we show how, under some conditions on X, its Hilbert function changes when we add points to X lying on a (1, 0) or (0, 1)-line. As a particular case we show also that if X is ACM this result holds without any additional hypothesis.
引用
收藏
页码:57 / 67
页数:10
相关论文
共 10 条
[1]  
Giuffrida S.(2003)Curves on a smooth quadric Collect. Math. 54 309-325
[2]  
Maggioni R.(1992)On the postulation of 0-dimensional subschemes on a smooth quadric Pacific J. Math. 155 251-282
[3]  
Giuffrida S.(2001)Fat points schemes on a smooth quadric J. Pure Appl. Algebra 162 183-208
[4]  
Maggioni R.(2004)Fat points in Can. J. Math. 56 716-741
[5]  
Ragusa A.(2002) and their Hilbert functions J. Pure Appl. Algebra 176 223-247
[6]  
Guardo E.(2003)The border of the Hilbert function of a set of points in J. Algebra 264 420-441
[7]  
Guardo E.(undefined)The Hilbert function of ACM set of points in undefined undefined undefined-undefined
[8]  
Van Tuyl A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Van Tuyl A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Van Tuyl A.(undefined)undefined undefined undefined undefined-undefined