Distributionally robust simple integer recourse

被引:11
作者
Xie W. [1 ]
Ahmed S. [2 ]
机构
[1] Virginia Tech, Blacksburg, VA
[2] Georgia Institute of Technology, Atlanta, GA
基金
美国国家科学基金会;
关键词
Distributionally robust; Mixed integer conic program; Stochastic integer recourse;
D O I
10.1007/s10287-018-0313-1
中图分类号
学科分类号
摘要
The simple integer recourse (SIR) function of a decision variable is the expectation of the integer round-up of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two-stage stochastic linear programming. Structural properties and approximations of SIR functions have been extensively studied in the seminal works of van der Vlerk and coauthors. We study a distributionally robust SIR function (DR-SIR) that considers the worst-case expectation over a given family of distributions. Under the assumption that the distribution family is specified by its mean and support, we derive a closed form analytical expression for the DR-SIR function. We also show that this nonconvex DR-SIR function can be represented using a mixed-integer second-order conic program. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:351 / 367
页数:16
相关论文
共 25 条
[1]  
Bayraksan G., Love D.K., Data-driven stochastic programming using phi-divergences, Tutorials in operations research, INFORMS, pp. 1-19, (2015)
[2]  
Delage E., Ye Y., Distributionally robust optimization under moment uncertainty with application to data-driven problems, Oper Res, 58, 3, pp. 595-612, (2010)
[3]  
Mohajerin Esfahani P., Kuhn D., Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations, Mathematical Programming, 171, 1-2, pp. 115-166, (2017)
[4]  
Jiang R., Guan Y., Data-driven chance constrained stochastic program, Math Program, 158, 1-2, pp. 291-327, (2016)
[5]  
Haneveld W.K.K., Stougie L., van der Vlerk M., On the convex hull of the simple integer recourse objective function, Ann Oper Res, 56, pp. 209-224, (1995)
[6]  
Haneveld W.K.K., Stougie L., van der Vlerk M., An algorithm for the construction of convex hulls in simple integer recourse programming, Ann Oper Res, 64, pp. 67-81, (1996)
[7]  
Haneveld W.K.K., Stougie L., van der Vlerk M., Simple integer recourse models, Math Program Ser B, 108, pp. 435-473, (2006)
[8]  
Louveaux F.V., van der Vlerk M.H., Stochastic programming with simple integer recourse, Math Program, 61, 1-3, pp. 301-325, (1993)
[9]  
Popescu I., Robust mean-covariance solutions for stochastic optimization, Oper Res, 55, pp. 98-112, (2007)
[10]  
Postek K., Ben-Tal A., DenHertog D., Melenberg B., Exact robust counterparts of ambiguous stochastic constraints under mean and dispersion information, (2015)