Sturdy Harmonic Functions and their Integral Representations

被引:0
作者
Jürgen Bliedtner
Peter A. Loeb
机构
[1] Universität Frankfurt,Fachbereich Mathematik
[2] University of Illinois at Urbana-Champaign,Department of Mathematics
来源
Positivity | 2003年 / 7卷
关键词
harmonic functions; integral representations; Dirichlet problem; Martin boundary; Choquet simplex;
D O I
暂无
中图分类号
学科分类号
摘要
Sturdy harmonic functions constitute all but the least tractable of the positive harmonic functions in potential-theoretic settings. They are the uniform limits on compact sets of positive, bounded harmonic functions and are also produced by a simple integral representation on the boundary of a natural compactification of the space on which they are defined. The boundary of that compactification is metrizable, and more regular for the Dirichlet problem, in general, than is the Martin boundary if that boundary is even defined in the setting.
引用
收藏
页码:355 / 387
页数:32
相关论文
共 21 条
[1]  
Bliedtner J.(1992)A reduction technique for limit theorems in analysis and probability theory Arkiv för Mat 30 25-43
[2]  
Loeb P.A.(1995)Best filters for the general Fatou boundary limit theorem Proc. Amer. Math. Soc 123 459-463
[3]  
Bliedtner J.(2000)The optimal differentiation basis and liftings of Trans. Amer. Math. Soc 352 4693-4710
[4]  
Loeb P.A.(1976)On the existence of lower densities in noncomplete measure spaces, A. Bellow, Springer, Lecture Notes in Mathematics 541 133-135
[5]  
Bliedtner J.(1970)Positive harmonic functions on Lipschitz domains Trans. Am. Math. Soc 147 507-526
[6]  
Loeb P.A.(1983)On the simplicial cone of superharmonic functions in a resolutive compactification of a harmonic space Osaka J. Math 20 881-898
[7]  
Graf S.(1986)Compactifications of Martin type of harmonic spaces Osaka J. Math 23 653-680
[8]  
von Weizsäcker H.(1971)A minimal compactification for extending continuous functions Martin boundary and Hp-theory of harmonic spaces, in Seminar on Potential Theory II, Springer, Lecture Notes in Mathematics 266 102-151
[9]  
Hunt R.(1967)Applications of nonstandard analysis to ideal boundaries in potential theory Proc. Amer. Math. Soc. 18 282-283
[10]  
Wheeden R.(1976)A regular metrizable boundary for solutions of elliptic and parabolic differential equations Israel J. Math. 25 154-187