In this paper, it is proved that the finite group G is solvable if cod(χ)≤pχ·χ(1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\chi ) \le p_{\chi }\cdot \chi (1)$$\end{document} for any nonlinear irreducible character χ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi $$\end{document} of G, where pχ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_{\chi }$$\end{document} is the largest prime divisor of |G:kerχ|\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|G:\mathrm{ker} \chi |$$\end{document}.
机构:
Kent State Univ, Dept Math Sci, Kent, OH 44242 USAKent State Univ, Dept Math Sci, Kent, OH 44242 USA
Lewis, Mark L.
Yan, Quanfu
论文数: 0引用数: 0
h-index: 0
机构:
Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaKent State Univ, Dept Math Sci, Kent, OH 44242 USA
机构:
Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Tehran Polytech, Tehran 15914, Iran
Ebrahimi, Mehdi
Khatami, Maryam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan 8174673441, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Tehran Polytech, Tehran 15914, Iran