Long Time Quantum Evolution of Observables on Cusp Manifolds

被引:0
作者
Yannick Bonthonneau
机构
[1] UQÀM,
[2] CIRGET,undefined
来源
Communications in Mathematical Physics | 2016年 / 343卷
关键词
Manifold; Covariant Derivative; Pseudodifferential Operator; Eisenstein Series; Resonant State;
D O I
暂无
中图分类号
学科分类号
摘要
The Eisenstein functions E(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E(s)}$$\end{document} are some generalized eigenfunctions of the Laplacian on manifolds with cusps. We give a version of Quantum Unique Ergodicity for them, for |Is|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\mathfrak{I}s| \to \infty}$$\end{document} and Rs→d/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{R}s \to d/2}$$\end{document} with Rs-d/2≥loglog|Is|/log|Is|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{R}s - d/2 \geq \log \log |\mathfrak{I}s| / \log |\mathfrak{I}s|}$$\end{document}. For the purpose of the proof, we build a semi-classical quantization procedure for finite volume manifolds with hyperbolic cusps, adapted to a geometrical class of symbols. We also prove an Egorov Lemma until Ehrenfest times on such manifolds.
引用
收藏
页码:311 / 359
页数:48
相关论文
共 16 条
[1]  
Babillot M.(2002)On the mixing property for hyperbolic systems Israel J. Math. 129 61-76
[2]  
Bouzouina A.(2002)Uniform semiclassical estimates for the propagation of quantum observables Duke Math. J. 111 223-252
[3]  
Robert D.(2007)The Hopf argument J. Modern Dyn. 1 147-153
[4]  
Coudène Y.(2014)Microlocal limits of plane waves and Eisenstein functions Ann. Sci. Éc. Norm. Supér. (4) 47 371-448
[5]  
Dyatlov S.(2012)Microlocal limits of Eisenstein functions away from the unitarity axis J. Spectr. Theory 2 181-202
[6]  
Guillarmou C.(2002)On the geometry of tangent bundles Expo Math. 20 1-41
[7]  
Dyatlov S.(2014)Equidistribution of Eisenstein series on convex co-compact hyperbolic manifolds Am. J. Math. 136 445-479
[8]  
Gudmundsson S.(1994)Quantum unique ergodicity for Eisenstein series on Ann. Inst. Fourier (Grenoble) 44 1477-1504
[9]  
Kappos E.(1983)Spectral theory for Riemannian manifolds with cusps and a related trace formula Math. Nachr. 111 197-288
[10]  
Guillarmou C.(1992)Spectral geometry and scattering theory for certain complete surfaces of finite volume Invent. Math. 109 265-305