Asymptotically efficient estimation of Ergodic rough fractional Ornstein-Uhlenbeck process under continuous observations

被引:0
作者
Kohei Chiba
Tetsuya Takabatake
机构
[1] Osaka University,Graduate School of Engineering Science
[2] Hiroshima University,School of Economics
来源
Statistical Inference for Stochastic Processes | 2024年 / 27卷
关键词
Fractional Ornstein-Uhlenbeck process; Estimation of drift parameters; Continuous observations; Local asymptotic normality property; 62M09;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of asymptotically efficient estimation of drift parameters of the ergodic fractional Ornstein-Uhlenbeck process under continuous observations when the Hurst parameter H<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<1/2$$\end{document} and the mean of its stationary distribution is not equal to zero. In this paper, we derive asymptotically efficient rates and variances of estimators of drift parameters and prove an asymptotic efficiency of a maximum likelihood estimator of drift parameters.
引用
收藏
页码:103 / 122
页数:19
相关论文
共 23 条
[1]  
Bayer C(2016)Pricing under rough volatility Quant Finance 16 887-904
[2]  
Friz P(2018)Local asymptotic normality property for fractional Gaussian noise under high-frequency observations Ann Stat 46 2045-2061
[3]  
Gatheral J(2010)Asymptotic properties of MLE for partially observed fractional diffusion system Stat Inference Stoch Process 13 1-13
[4]  
Brouste A(2018)Efficient estimation of stable Lévy process with symmetric jumps Stat Inference Stoch Process 21 289-307
[5]  
Fukasawa M(2020)An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter Stat Inference Stoch Process 23 319-353
[6]  
Brouste A(2019)Asymptotically efficient estimators for self-similar stationary Gaussian noises under high frequency observations Bernoulli 25 1870-1900
[7]  
Kleptsyna M(2022)Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics Math Finance 32 1086-1132
[8]  
Brouste A(2002)Statistical analysis of the fractional Ornstein-Uhlenbeck type process Stat Inference Stoch Process 5 229-248
[9]  
Masuda H(2017)Maximum likelihood estimation in the fractional Vasicek model Lith J Stat 56 77-87
[10]  
Chiba K(2002)Regularization of differential equations by fractional noise Stoch Proc Appl 102 103-116