A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes

被引:0
作者
Ilaria Piazza
Nigel Beaton
Roland Bruderer
Thomas Knobloch
Crystel Barbisan
Lucie Chandat
Alexander Sudau
Isabella Siepe
Oliver Rinner
Natalie de Souza
Paola Picotti
Lukas Reiter
机构
[1] ETH Zürich,
[2] Institute of Molecular Systems Biology,undefined
[3] Department of Biology,undefined
[4] Biognosys AG,undefined
[5] Max Delbrück Center for Molecular Medicine,undefined
[6] Bayer SAS,undefined
[7] Crop Science Division,undefined
[8] BASF SE,undefined
来源
Nature Communications | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identify the protein targets of a compound and also detect the interaction surfaces between ligands and protein targets without prior labeling or modification. To address this limitation, we here develop LiP-Quant, a drug target deconvolution pipeline based on limited proteolysis coupled with mass spectrometry that works across species, including in human cells. We use machine learning to discern features indicative of drug binding and integrate them into a single score to identify protein targets of small molecules and approximate their binding sites. We demonstrate drug target identification across compound classes, including drugs targeting kinases, phosphatases and membrane proteins. LiP-Quant estimates the half maximal effective concentration of compound binding sites in whole cell lysates, correctly discriminating drug binding to homologous proteins and identifying the so far unknown targets of a fungicide research compound.
引用
收藏
相关论文
共 50 条
[1]   A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes [J].
Piazza, Ilaria ;
Beaton, Nigel ;
Bruderer, Roland ;
Knobloch, Thomas ;
Barbisan, Crystel ;
Chandat, Lucie ;
Sudau, Alexander ;
Siepe, Isabella ;
Rinner, Oliver ;
de Souza, Natalie ;
Picotti, Paola ;
Reiter, Lukas .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   LiP-MS, a machine learning-based chemoproteomic approach to identify drug targets in complex proteomes [J].
Redfern, D. ;
Beaton, N. ;
Sabino, F. ;
Below, C. ;
Bruderer, R. ;
Feng, Y. ;
Castaldi, P. ;
Reiter, L. .
EUROPEAN JOURNAL OF CANCER, 2022, 174 :S115-S115
[3]   LiP-MS, a machine learning-based chemoproteomic approach to identify drug targets in complex proteomes. [J].
Beaton, Nigel ;
Feng, Yuehan ;
Bruderer, Roland ;
Hendricks, Adam ;
Hamza, Ghaith ;
Miele, Eric ;
Davies, Rick ;
Beeler, Kristina ;
Piazza, Ilaria ;
Picotti, Paola ;
Castaldi, Paola ;
Reiter, Lukas .
CANCER RESEARCH, 2021, 81 (13)
[4]   LiP-Quant, an automated chemoproteomic approach to identify drug targets in complex proteomes [J].
Feng, Y. ;
Beaton, N. ;
Piazza, I. ;
Bruderer, R. ;
Picotti, P. ;
Reiter, L. .
EUROPEAN JOURNAL OF CANCER, 2020, 138 :S54-S55
[5]   LiP-Quant, an automated chemoproteomic approach to identify drug targets in complex proteomes [J].
Feng, Yuehan ;
Beaton, Nigel ;
Bruderer, Roland ;
Piazza, Ilaria ;
Picotti, Paola ;
Reiter, Lukas .
CANCER RESEARCH, 2020, 80 (16)
[6]   Unraveling viral drug targets: a deep learning-based approach for the identification of potential binding sites [J].
Popov, Petr ;
Kalinin, Roman ;
Buslaev, Pavel ;
Kozlovskii, Igor ;
Zaretckii, Mark ;
Karlov, Dmitry ;
Gabibov, Alexander ;
Stepanov, Alexey .
BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
[7]   Co-evolution-based prediction of metal-binding sites in proteomes by machine learning [J].
Yao Cheng ;
Haobo Wang ;
Hua Xu ;
Yuan Liu ;
Bin Ma ;
Xuemin Chen ;
Xin Zeng ;
Xianghe Wang ;
Bo Wang ;
Carina Shiau ;
Sergey Ovchinnikov ;
Xiao-Dong Su ;
Chu Wang .
Nature Chemical Biology, 2023, 19 :548-555
[8]   Co-evolution-based prediction of metal-binding sites in proteomes by machine learning [J].
Cheng, Yao ;
Wang, Haobo ;
Xu, Hua ;
Liu, Yuan ;
Ma, Bin ;
Chen, Xuemin ;
Zeng, Xin ;
Wang, Xianghe ;
Wang, Bo ;
Shiau, Carina ;
Ovchinnikov, Sergey ;
Su, Xiao-Dong ;
Wang, Chu .
NATURE CHEMICAL BIOLOGY, 2023, 19 (05) :548-+
[9]   MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data [J].
Chowdhury, Rohit Roy ;
Dhar, Jesmita ;
Robinson, Stephy Mol ;
Lahiri, Abhishake ;
Basak, Kausik ;
Paul, Sandip ;
Banerjee, Rachana .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
[10]   A new functional, chemical proteomics technology to identify purine nucleotide binding sites in complex proteomes [J].
Hanoulle, Xavier ;
Van Damme, Jozef ;
Staes, An ;
Martens, Lennart ;
Goethals, Marc ;
Vandekerckhove, Joel ;
Gevaert, Kris .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (12) :3438-3445