The quantum vacuum at the foundations of classical electrodynamics

被引:0
作者
G. Leuchs
A. S. Villar
L. L. Sánchez-Soto
机构
[1] Max Planck Institut für die Physik des Lichts,Institut für Optik, Information und Photonik
[2] Universität Erlangen-Nürnberg,Departamento de Óptica, Facultad de Física
[3] Universidad Complutense,undefined
来源
Applied Physics B | 2010年 / 100卷
关键词
Electric Displacement; Vacuum Polarization; Classical Electrodynamic; Magnetic Dipole Moment; Quantum Vacuum;
D O I
暂无
中图分类号
学科分类号
摘要
In the classical theory of electromagnetism, the permittivity ε0 and the permeability μ0 of free space are constants whose magnitudes do not seem to possess any deeper physical meaning. By replacing the free space of classical physics with the quantum notion of the vacuum, we speculate that the values of the aforementioned constants could arise from the polarization and magnetization of virtual pairs in vacuum. A classical dispersion model with parameters determined by quantum and particle physics is employed to estimate their values. We find the correct orders of magnitude. Additionally, our simple assumptions yield an independent estimate for the number of charged elementary particles based on the known values of ε0 and μ0 and for the volume of a virtual pair. Such an interpretation would provide an intriguing connection between the celebrated theory of classical electromagnetism and the quantum theory in the weak-field limit.
引用
收藏
页码:9 / 13
页数:4
相关论文
共 25 条
[1]  
Duff M.J.(2002)undefined J. High Energy Phys. 03 1-undefined
[2]  
Okun L.B.(2000)undefined Springer Tracts Mod. Phys. 166 714-undefined
[3]  
Veneziano G.(1936)undefined Z. Phys. 98 742-undefined
[4]  
Dittrich W.(1931)undefined Z. Phys. 69 547-undefined
[5]  
Gies H.(1931)undefined Z. Phys. 73 664-undefined
[6]  
Heisenberg W.(1951)undefined Phys. Rev. 82 14-undefined
[7]  
Euler H.(2009)undefined Phys. Rev. Lett. 102 1177-undefined
[8]  
Sauter F.(2006)undefined Zh. Eksp. Teor. Fiz. 129 178-undefined
[9]  
Sauter F.(1954)undefined Dokl. Akad. Nauk 95 667-undefined
[10]  
Schwinger J.(1974)undefined Teor. Mat. Fiz. 23 undefined-undefined