Moments of L-functions attached to the twist of modular form by Dirichlet characters

被引:0
|
作者
Guanghua Ji
Haiwei Sun
机构
[1] Shandong University,School of Mathematics
[2] Shandong University,School of Mathematics and Statistics
来源
Chinese Annals of Mathematics, Series B | 2015年 / 36卷
关键词
Moments; Automorphic ; -functions; Convexity theorem; 11M41; 11F66; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(z) be a holomorphic cusp form of weight κ with respect to the full modular group SL2(ℤ). Let L(s, f) be the automorphic L-function associated with f(z) and χ be a Dirichlet character modulo q. In this paper, the authors prove that unconditionally for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = \tfrac{1} {n}$$\end{document} with n ∈ ℕ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k \left( {q,f} \right) = \sum\limits_{\begin{array}{*{20}c} {\chi (\bmod q)} \\ {\chi \ne \chi _0 } \\ \end{array} } {\left| {L\left( {\frac{1} {2},f \otimes \chi } \right)} \right|^{2k} < < _k \varphi \left( q \right)(\log q)^{k^2 } ,}$$\end{document} and the result also holds for any real number 0 < k < 1 under the GRH for L(s, f ⊗ χ). The authors also prove that under the GRH for L(s, f ⊗ χ), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k \left( {q,f} \right) > > _k \varphi (q)(log q)^{k^2 }$$\end{document} for any real number k > 0 and any large prime q.
引用
收藏
页码:237 / 252
页数:15
相关论文
共 50 条