Moments of L-functions attached to the twist of modular form by Dirichlet characters

被引:0
|
作者
Guanghua Ji
Haiwei Sun
机构
[1] Shandong University,School of Mathematics
[2] Shandong University,School of Mathematics and Statistics
关键词
Moments; Automorphic ; -functions; Convexity theorem; 11M41; 11F66; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(z) be a holomorphic cusp form of weight κ with respect to the full modular group SL2(ℤ). Let L(s, f) be the automorphic L-function associated with f(z) and χ be a Dirichlet character modulo q. In this paper, the authors prove that unconditionally for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = \tfrac{1} {n}$$\end{document} with n ∈ ℕ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k \left( {q,f} \right) = \sum\limits_{\begin{array}{*{20}c} {\chi (\bmod q)} \\ {\chi \ne \chi _0 } \\ \end{array} } {\left| {L\left( {\frac{1} {2},f \otimes \chi } \right)} \right|^{2k} < < _k \varphi \left( q \right)(\log q)^{k^2 } ,}$$\end{document} and the result also holds for any real number 0 < k < 1 under the GRH for L(s, f ⊗ χ). The authors also prove that under the GRH for L(s, f ⊗ χ), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k \left( {q,f} \right) > > _k \varphi (q)(log q)^{k^2 }$$\end{document} for any real number k > 0 and any large prime q.
引用
收藏
页码:237 / 252
页数:15
相关论文
共 50 条
  • [1] Moments of L-Functions Attached to the Twist of Modular Form by Dirichlet Characters
    Ji, Guanghua
    Sun, Haiwei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (02) : 237 - 252
  • [2] Moments of L-Functions Attached to the Twist of Modular Form by Dirichlet Characters
    Guanghua JI
    Haiwei SUN
    ChineseAnnalsofMathematics(SeriesB), 2015, 36 (02) : 237 - 252
  • [3] Wide moments of L-functions II: dirichlet L-functions
    Nordentoft, Asbjorn Christian
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (01): : 365 - 387
  • [4] Lower bounds for negative moments of quadratic twist of modular L-functions
    Huaqing Bian
    Xiaofei Yan
    Ruiyang Yue
    The Ramanujan Journal, 2024, 64 : 453 - 463
  • [5] Lower bounds for negative moments of quadratic twist of modular L-functions
    Bian, Huaqing
    Yan, Xiaofei
    Yue, Ruiyang
    RAMANUJAN JOURNAL, 2024, 64 (02): : 453 - 463
  • [6] DIRICHLET L-FUNCTIONS AND PRIMITIVE CHARACTERS
    APOSTOL, TM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 31 (02) : 384 - &
  • [7] On fractional moments of Dirichlet L-functions
    Kačenas A.
    Laurinčikas A.
    Zamarys S.
    Lithuanian Mathematical Journal, 2005, 45 (2) : 173 - 191
  • [8] Fractional moments of Dirichlet L-functions
    Heath-Brown, D. R.
    ACTA ARITHMETICA, 2010, 145 (04) : 397 - 409
  • [9] Moments of Derivatives of Modular L-Functions
    Kumar, Sumit
    Mallesham, Kummari
    Sharma, Prahlad
    Singh, Saurabh
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02): : 715 - 734
  • [10] Exceptional characters and nonvanishing of Dirichlet L-functions
    Bui, Hung M.
    Pratt, Kyle
    Zaharescu, Alexandru
    MATHEMATISCHE ANNALEN, 2021, 380 (1-2) : 593 - 642