Flexible data representation with feature convolution for semi-supervised learning

被引:0
|
作者
F. Dornaika
机构
[1] University of the Basque Country UPV/EHU,IKERBASQUE
[2] Basque Foundation for Science,undefined
来源
Applied Intelligence | 2021年 / 51卷
关键词
Graph-based embedding; Semi-supervised learning; Graph convolutions; Discriminant embedding; Pattern recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Data representation plays a crucial role in semi-supervised learning. This paper proposes a framework for semi-supervised data representation. It introduces a flexible nonlinear embedding model that integrates graph-based data convolutions. The proposed approach exploits structured data in order to estimate a nonlinear data representation as well as a linear transformation, enabling an inductive semi-supervised model. The introduced approach exploits data graphs at two different levels. First, it integrates manifold regularization that is encoded by the graph itself. Second, it optimizes a flexible linear transformation that maps the convolved data samples to their nonlinear representations. These convolved data are generated by the joint use of the graph and data. The proposed semi-supervised model overcomes some challenges related to some samples distributions in the original spaces. The proposed Graph Convolution based Semi-supervised Embedding (GCSE) provides flexible models which can improve both the data representation and the final performance of the learning model. Experiments are run on six image datasets for comparing the proposed approach with several state-of-art semi-supervised methods. These results show the effectiveness of the proposed framework.
引用
收藏
页码:7690 / 7704
页数:14
相关论文
共 50 条
  • [1] Flexible data representation with feature convolution for semi-supervised learning
    Dornaika, F.
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7690 - 7704
  • [2] Flexible data representation with graph convolution for semi-supervised learning
    Fadi Dornaika
    Neural Computing and Applications, 2021, 33 : 6851 - 6863
  • [3] Flexible data representation with graph convolution for semi-supervised learning
    Dornaika, Fadi
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12) : 6851 - 6863
  • [4] Deep data representation with feature propagation for semi-supervised learning
    F. Dornaika
    V. Truong Hoang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1303 - 1316
  • [5] Deep data representation with feature propagation for semi-supervised learning
    Dornaika, F.
    Hoang, V. Truong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1303 - 1316
  • [6] Inductive semi-supervised learning with Graph Convolution based regression
    Zhu, Ruifeng
    Dornaika, Fadi
    Ruichek, Yassine
    NEUROCOMPUTING, 2021, 434 : 315 - 322
  • [7] Graph Representation Learning Enhanced Semi-Supervised Feature Selection
    Tan, Jun
    Qi, Zhifeng
    Gui, Ning
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (09)
  • [8] Feature ranking for semi-supervised learning
    Petkovic, Matej
    Dzeroski, Saso
    Kocev, Dragi
    MACHINE LEARNING, 2023, 112 (11) : 4379 - 4408
  • [9] Feature ranking for semi-supervised learning
    Matej Petković
    Sašo Džeroski
    Dragi Kocev
    Machine Learning, 2023, 112 : 4379 - 4408
  • [10] Robust Semi-supervised Representation Learning for Graph-Structured Data
    Guo, Lan-Zhe
    Han, Tao
    Li, Yu-Feng
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT III, 2019, 11441 : 131 - 143