Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds

被引:0
作者
Andrada, Adrian [1 ,2 ]
Tolcachier, Alejandro [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, Ave Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba RA-BC, Argentina
[2] CIEM CONICET, Ave Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
关键词
Sasakian manifold; Harmonic almost complex structure; Hermitian metric; Bismut connection; Calabi-Yau with torsion manifold; KAHLER; EXAMPLES; THEOREMS; TORSION;
D O I
10.1007/s12220-024-01620-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures (Ja,b,ga,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(J_{a,b},g_{a,b})$$\end{document}. We show in this article that the complex structure Ja,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{a,b}$$\end{document} is harmonic with respect to ga,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{a,b}$$\end{document}, i.e., it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kahler, balanced, strong Kahler with torsion, Gauduchon or k-Gauduchon (k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}). Finally, we study the Bismut connection associated to (Ja,b,ga,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(J_{a,b}, g_{a,b})$$\end{document} and we provide formulas for the Bismut-Ricci tensor RicB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ric}}<^>B$$\end{document} and the Bismut-Ricci form rho B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho <^>B$$\end{document}. We show that these tensors vanish if and only if each Sasakian factor is eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds.
引用
收藏
页数:42
相关论文
共 65 条
[1]  
Agricola I, 2006, ARCH MATH-BRNO, V42, P5
[2]   Bismut connection on Vaisman manifolds [J].
Andrada, Adrian ;
Villacampa, Raquel .
MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (02) :1091-1126
[3]   ABELIAN BALANCED HERMITIAN STRUCTURES ON UNIMODULAR LIE ALGEBRAS [J].
Andrada, Adrian ;
Villacampa, Raquel .
TRANSFORMATION GROUPS, 2016, 21 (04) :903-927
[4]   A CLASS OF SASAKIAN 5-MANIFOLDS [J].
Andrada, Adrian ;
Fino, Anna ;
Vezzoni, Luigi .
TRANSFORMATION GROUPS, 2009, 14 (03) :493-512
[5]  
[Anonymous], 2008, Sasakian Geometry
[6]   Generalized Kahler manifolds, commuting complex structures, and split tangent bundles [J].
Apostolov, Vestislav ;
Gualtieri, Marco .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :561-575
[7]   On the Curvature of the Bismut Connection: Bismut-Yamabe Problem and Calabi-Yau with Torsion Metrics [J].
Barbaro, Giuseppe .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
[8]  
Belgun F, 2012, Arxiv, DOI arXiv:1208.4021
[9]   A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS [J].
BISMUT, JM .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :681-699
[10]  
Blair DE, 2010, PROG MATH, V203, P1, DOI 10.1007/978-0-8176-4959-3