Innovative solutions and sensitivity analysis of a fractional complex Ginzburg–Landau equation

被引:0
作者
Temesgen Desta Leta
Jingbing Chen
Abdelfattah El Achab
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[2] Nanjing University of Information Science and Technology,College of Reading
[3] University Cadi Ayyad,Faculty of Science Semlalia
[4] Bd. du Prince Moulay Abdellah,undefined
来源
Optical and Quantum Electronics | 2023年 / 55卷
关键词
Bifurcation; Complex Ginzburg–Landau equation; Traveling wave solution; Chaotic behavior; 34K20; 34K18; 37G10; 78M25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the fractional complex Ginzburg–Landau equation with Kerr law and power law nonlinearity. Using the conformable derivative approach and the bifurcation method, we effectively derived new explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, kink and antikink wave solution, compacton) under different parameter conditions. The quasiperiodic, chaotic behavior and sensitivity analysis of the model is studied for different values of parameters after deploying an external periodic force. Finally, various 2D and 3D simulation figures are plotted to show the physical significance of these exact solutions.
引用
收藏
相关论文
共 88 条
[61]  
Lu PH(undefined)undefined undefined undefined undefined-undefined
[62]  
Wang BH(undefined)undefined undefined undefined undefined-undefined
[63]  
Dai CQ(undefined)undefined undefined undefined undefined-undefined
[64]  
Lü X(undefined)undefined undefined undefined undefined-undefined
[65]  
Zhu H-W(undefined)undefined undefined undefined undefined-undefined
[66]  
Meng X-H(undefined)undefined undefined undefined undefined-undefined
[67]  
Milovanov AV(undefined)undefined undefined undefined undefined-undefined
[68]  
Rasmussen JJ(undefined)undefined undefined undefined undefined-undefined
[69]  
Mohammed WW(undefined)undefined undefined undefined undefined-undefined
[70]  
El-Morshedy M(undefined)undefined undefined undefined undefined-undefined