Nonlinear Stochastic Operators and Associated Inhomogeneous Entangled Quantum Markov Chains

被引:2
作者
Souissi, Abdessatar [1 ]
Mukhamedov, Farrukh [2 ,3 ]
机构
[1] Qassim Univ, Coll Business & Econ, Dept Management Informat Syst, Buraydah 51452, Saudi Arabia
[2] United Arab Emirates Univ, Coll Sci, Dept Math Sci, POB 15551, Abu Dhabi, U Arab Emirates
[3] VI Romanovskiy Inst Math, 9 Univ Str, Tashkent 100174, Uzbekistan
关键词
Stochastic operator; Stability; Markov measure; Quantum theory; Entangled; ORDERED BANACH-SPACES; VOLTERRA; THEOREM;
D O I
10.1007/s44198-024-00172-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce a class of F-stochastic operators on a finite-dimensional simplex, each of which is regular, ascertaining that the species distribution in the succeeding generation corresponds to the species distribution in the previous one in the long run. It is proposed a new scheme to define non-homogeneous Markov chains contingent on the F-stochastic operators and given initial data. By means of the uniform ergodicity of the non-homogeneous Markov chain, we define a non-homogeneous (quantum) entangled Markov chain. Furthermore, it is established that the non-homogeneous entangled Markov chain enables psi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-mixing property.
引用
收藏
页数:15
相关论文
共 58 条
[1]  
ACCARDI L, 1983, P ROY IRISH ACAD A, V83, P251
[2]   TOPICS IN QUANTUM PROBABILITY [J].
ACCARDI, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 77 (03) :169-192
[3]   CONDITIONAL EXPECTATIONS IN VONNEUMANN-ALGEBRAS AND A THEOREM OF TAKESAKI [J].
ACCARDI, L ;
CECCHINI, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 45 (02) :245-273
[4]  
Accardi L., 1975, Func. Anal. Appl, V9, P1
[5]  
Accardi L., 2008, Publ. RIMS, Kyoto Univ., V1609, P75
[6]   A Markov-Dobrushin Inequality for Quantum Channels [J].
Accardi, Luigi ;
Lu, Yun Gang ;
Souissi, Abdessatar .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2021, 28 (04)
[7]   Entangled Markov chains are indeed entangled [J].
Accardi, Luigi ;
Matsuoka, Takashi ;
Ohya, Masanori .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2006, 9 (03) :379-390
[8]   Entangled Markov chains [J].
Accardi, Luigi ;
Fidaleo, Francesco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (03) :327-346
[9]   Quantum Markov chains: A unification approach [J].
Accardi, Luigi ;
Souissi, Abdessatar ;
Soueidy, El Gheteb .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (02)
[10]   Mixing times for uniformly ergodic Markov chains [J].
Aldous, D ;
Lovasz, L ;
Winkler, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 71 (02) :165-185