Integrable Evolution Equations on Associative Algebras

被引:0
作者
Peter J. Olver
Vladimir V. Sokolov
机构
[1] School of Mathematics,
[2] University of Minnesota,undefined
[3] Minneapolis,undefined
[4] MN 55455,undefined
[5] USA.¶E-mail: olver@ima.umn.edu,undefined
[6] http://www.math.umn.edu/∼olver,undefined
[7] Ufa Mathematical Institute,undefined
[8] Russian Academy of Sciences,undefined
[9] Chernyshevski str. 112,undefined
[10] 450000,undefined
[11] Ufa,undefined
[12] Russia. E-mail: sokolov@imat.rb.ru,undefined
来源
Communications in Mathematical Physics | 1998年 / 193卷
关键词
Evolution Equation; Integrable System; Basic Theory; Field Variable; Associative Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
This paper surveys the classification of integrable evolution equations whose field variables take values in an associative algebra, which includes matrix, Clifford, and group algebra valued systems. A variety of new examples of integrable systems possessing higher order symmetries are presented. Symmetry reductions lead to an associative algebra-valued version of the Painlevé transcendent equations. The basic theory of Hamiltonian structures for associative algebra-valued systems is developed and the biHamiltonian structures for several examples are found.
引用
收藏
页码:245 / 268
页数:23
相关论文
empty
未找到相关数据