A Well-Posed Definition for Plastic Strain Rate in Indentation

被引:1
作者
Stone, D. S. [1 ]
Jakes, J. E. [2 ]
Elmustafa, A. A. [3 ,4 ]
机构
[1] Univ Madison Wisconsin, Dept Mat Sci & Engn, Madison, WI 53705 USA
[2] USDA, Forest Biopolymers Sci & Engn, Forest Serv, Forest Prod Lab, Madison, WI 53726 USA
[3] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA
[4] Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
基金
美国国家科学基金会;
关键词
BROAD-BAND NANOINDENTATION; RATE SENSITIVITY; LOAD RELAXATION; CREEP; HARDNESS; DEFORMATION; TEMPERATURE; MOLYBDENUM; METALS; FLOW;
D O I
10.1007/s11837-024-06556-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To compare hardness versus strain rate data from different kinds of indentation creep test can be challenging. It is often difficult to determine whether measured differences in material response along different loading paths, such as constant load creep or load relaxation, are real or merely arise as artifacts from the analysis. We argue that the difficulty lies in how indentation strain rate is defined. For traditional definitions of strain rate, such as epsilon(center dot)h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\varepsilon }_{h}$$\end{document}, which measures the rate of penetration, or epsilon(center dot)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\varepsilon }_{{\text{A}}}$$\end{document}, which measures the growth of indent area, material response might seem path-dependent even when it is not. We introduce a new definition of plastic strain rate, epsilon(center dot)irr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\varepsilon }_{{{\text{irr}}}}$$\end{document}, which is based on irreversible work and is well-posed in the sense that it gives the same results from different loading paths when deformation is path-independent. This property frees experimenters to isolate and explore deformation mechanisms that respond differently along different loading paths, which is useful for revealing the influences of time and strain rate on evolution of structure. epsilon(center dot)irr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\varepsilon }_{{{\text{irr}}}}$$\end{document} is important for exploring path-dependence in high-hardness/modulus (greater than or similar to 0.02)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0.02)$$\end{document} materials like ceramics and polymers. For low-hardness-modulus materials other measures of strain rate suffice.
引用
收藏
页码:2946 / 2955
页数:10
相关论文
共 46 条
  • [1] On the nanomechanical properties and local strain rate sensitivity of selected Aluminium-based composites reinforced with metallic and ceramic particles
    Alaneme K.K.
    Bodunrin M.O.
    Okotete E.A.
    [J]. Journal of King Saud University - Engineering Sciences, 2023, 35 (01) : 62 - 68
  • [2] EFFECT OF STRAIN RATE AND TEMPERATURE ON YIELD AND FLOW OF POLYCRYSTALLINE NIOBIUM AND MOLYBDENUM
    BRIGGS, TL
    CAMPBELL, JD
    [J]. ACTA METALLURGICA, 1972, 20 (05): : 711 - &
  • [3] Indentation creep deformation behavior of local zones for X70 girth weld
    Cao, Jun
    Wang, Ke
    Ma, Weifeng
    Ren, Junjie
    Nie, Hailiang
    Dang, Wei
    Liang, Xiaobin
    Yao, Tian
    Zhao, Xiaohan
    [J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2022, 199
  • [4] The contribution of grain boundary sliding to the deformation in an ultrafine-grained Mg-Al-Zn alloy
    Carvalho, Amanda P.
    Figueiredo, Roberto B.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2023, 58 (19) : 8130 - 8142
  • [5] Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures
    Chen, Jian
    Beake, Ben D.
    Bell, Gerard A.
    Tait, Yalan
    Gao, Fengge
    [J]. JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2016, 11 (09) : 695 - 706
  • [6] Scaling, dimensional analysis, and indentation measurements
    Cheng, YT
    Cheng, CM
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2004, 44 (4-5) : 91 - 149
  • [7] THE RESPONSE OF SOLIDS TO ELASTIC PLASTIC INDENTATION .1. STRESSES AND RESIDUAL-STRESSES
    CHIANG, SS
    MARSHALL, DB
    EVANS, AG
    [J]. JOURNAL OF APPLIED PHYSICS, 1982, 53 (01) : 298 - 311
  • [8] IMPRESSION CREEP - NEW CREEP TEST
    CHU, SNG
    LI, JCM
    [J]. JOURNAL OF MATERIALS SCIENCE, 1977, 12 (11) : 2200 - 2208
  • [9] Conrad H., 1964, HIGH STRENGTH MAT, P436
  • [10] A method for interpreting the data from depth-sensing indentation instruments
    Doerner, M. F.
    Nix, W. D.
    [J]. JOURNAL OF MATERIALS RESEARCH, 1986, 1 (04) : 601 - 609