Fourier Transform for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Functions with a Vector Measure on a Homogeneous Space of Compact Groups

被引:0
作者
Sorravit Phonrakkhet
Keng Wiboonton
机构
[1] Chulalongkorn University,Department of Mathematics and Computer Science
关键词
Vector measure; Homogeneous space; Compact group; Fourier transform; 46G10; 43A15; 43A85;
D O I
10.1007/s00041-024-10077-z
中图分类号
学科分类号
摘要
Let G be a compact group and G/H a homogeneous space where H is a closed subgroup of G. Define an operator TH:C(G)→C(G/H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_H:C(G) \rightarrow C(G/H)$$\end{document} by THf(tH)=∫Hf(th)dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_Hf(tH)=\int _H f(th) \, dh$$\end{document} for each tH∈G/H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tH \in G/H$$\end{document}. In this paper, we extend TH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_H$$\end{document} to a norm-decreasing operator between Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spaces with a vector measure for each 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p <\infty $$\end{document}. This extension will be used to derive properties of invariant vector measures on G/H. Moreover, a definition of the Fourier transform for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-functions with a vector measure is introduced on G/H. We also prove the uniqueness theorem and the Riemann–Lebesgue lemma.
引用
收藏
相关论文
共 17 条
[1]  
Blasco O(2016)Fourier analysis for vector-measures on compact abelian groups Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 110 519-539
[2]  
Calabuig JM(2013)Fourier transform and convolutions on J. Fourier Anal. Appl. 19 312-332
[3]  
Galaz-Fontes F(2009) of a vector measure on a compact Hausdorff abelian group J. Math. Anal. Appl. 358 355-363
[4]  
Navarrete EM(2017)Algebra structure for Groups Geom. Dyn. 11 1437-1467
[5]  
Sánchez-Pérez EA(2018) of a vector measure Can. J. Math. 70 97-116
[6]  
Delgado O(2018)Abstract operator-valued Fourier transforms over homogeneous spaces of compact groups Int. J. Math. 29 1850005-547
[7]  
Miana PJ(2019)A class of abstract linear representations for convolution function algebras over homogeneous spaces of compact groups Groups Geom. Dyn. 13 511-200
[8]  
Farashahi AG(2020)Abstract measure algebras over homogeneous spaces of compact groups Mich. Math. J. 69 179-98
[9]  
Farashahi AG(2020)Fourier-Stieltjes transforms over homogeneous spaces of compact groups Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 114 50-938
[10]  
Farashahi AG(2021)Absolutely convergent Fourier series of functions over homogeneous spaces of compact groups Proc. Edinb. Math. Soc. (2) 64 87-undefined