共 37 条
- [21] On the Spectral Problem Lu=λu′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L} u=\lambda u'}$$\end{document} and Applications Communications in Mathematical Physics, 2016, 343 (2) : 361 - 391
- [22] Integrability and exact solutions for a nonlocal matrix nonlinear Schrödinger equation with self-induced PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric potentials Nonlinear Dynamics, 2023, 111 (13) : 12447 - 12459
- [23] Utilizing two methods to discover novel travelling wave solutions for the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional Chiral nonlinear Schrödinger equation Optical and Quantum Electronics, 56 (7)
- [24] Small amplitude two dimensional electrostatic excitations in a magnetized dusty plasma with q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document}-distributed electrons Astrophysics and Space Science, 2016, 361 (7)
- [25] Spin-Peierls lattice fluctuations and disorders in CuGeO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_\mathsf{3}$\end{document} and its solid solutions The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 38 (4): : 581 - 598
- [26] A Centre-Stable Manifold for the Focussing Cubic NLS in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{1+3}$$\end{document} Communications in Mathematical Physics, 2008, 280 (1) : 145 - 205
- [27] On the “kp^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\varvec{kp}}}$$\end{document}-operator”, new extension of the KdV6 to (m + 1)-dimensional equation and traveling waves solutions Nonlinear Dynamics, 2016, 85 (3) : 1509 - 1515
- [28] NMR Properties of the Polar Phase of Superfluid 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}He in Anisotropic Aerogel Under Rotation Journal of Low Temperature Physics, 2016, 184 (5-6) : 1007 - 1014
- [29] Soliton solutions of generalized (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional Yu–Toda–Sasa–Fukuyama equation using Lie symmetry analysis Analysis and Mathematical Physics, 2020, 10 (4)
- [30] Bright soliton interactions in a (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf (2 +\mathbf 1) $$\end{document}-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain Nonlinear Dynamics, 2019, 95 (2) : 983 - 994