Residual-free bubbles for advection-diffusion problems: the general error analysis

被引:0
|
作者
F. Brezzi
D. Marini
E. Süli
机构
[1] Dipartimento di Matematica and I.A.N.-C.N.R.,
[2] Via Abbiategrasso 215,undefined
[3] I-27100 Pavia,undefined
[4] Italy ,undefined
[5] University of Oxford,undefined
[6] Computing Laboratory,undefined
[7] Wolfson Building,undefined
[8] Parks Road,undefined
[9] Oxford OX1 3QD,undefined
[10] UK ,undefined
来源
Numerische Mathematik | 2000年 / 85卷
关键词
Mathematics Subject Classification (1991):65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\varepsilon A + C)u = f$\end{document} subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first-order differential operator, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\varepsilon$\end{document} is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial finite elements of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k\geq 1$\end{document}.
引用
收藏
页码:31 / 47
页数:16
相关论文
共 50 条