Compactness properties for trace-class operators and applications to quantum mechanics

被引:0
作者
J. Dolbeault
P. Felmer
J. Mayorga-Zambrano
机构
[1] Ceremade Université Paris Dauphine,
[2] Universidad de Chile,undefined
来源
Monatshefte für Mathematik | 2008年 / 155卷
关键词
2000 Mathematics Subject Classification: 81Q10, 82B10; 26D15, 35J10, 47B34; Key words: Compact self-adjoint operators, trace-class operators, mixed states, occupation numbers, Lieb-Thirring inequality, Gagliardo-Nirenberg inequality, logarithmic Sobolev inequality, optimal constants, orthonormal and sub-orthonormal systems, Schrödinger operator, asymptotic distribution of eigenvalues, free energy, embeddings, compactness results;
D O I
暂无
中图分类号
学科分类号
摘要
Interpolation inequalities of Gagliardo-Nirenberg type and compactness results for self-adjoint trace-class operators with finite kinetic energy are established. Applying these results to the minimization of various free energy functionals, we determine for instance stationary states of the Hartree problem with temperature corresponding to various statistics.
引用
收藏
相关论文
共 40 条
  • [1] Ben Abdallah N(2003)Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness) Arch Ration Mech Anal 168 253-298
  • [2] Dolbeault J(2001)Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities Monatsh Math 133 1-82
  • [3] Carrillo JA(2006)Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems J Funct Anal 238 193-220
  • [4] Jüngel A(2007)Non linear diffusions as limit of kinetic equations with relaxation collision kernels Arch Ration Mech Anal 186 133-158
  • [5] Markowich PA(2001)On singular limits of mean-field equations Arch Ration Mech Anal 158 319-351
  • [6] Toscani G(1991)A simple proof of the generalized Lieb-Thirring inequalities in one-space dimension J Math Anal Appl 162 250-254
  • [7] Unterreiter A(1988)Generalization of the Sobolev-Lieb-Thirring inequalities and applications to the dimension of attractors Differ Integral Equ 1 1-21
  • [8] Dolbeault J(1983)Comment on the paper: “Necessary conditions on potential functions for nonrelativistic bound states” by G. Rosen Lett Nuovo Cimento 36 519-520
  • [9] Felmer P(1999)Stable steady states in stellar dynamics Arch Ration Mech Anal 147 225-243
  • [10] Loss M(1999)Isotropic steady states in galactic dynamics Comm Math Phys 219 607-629