Study of the Choice of Excitation Frequency for Sub Surface Defect Detection in Electrically Thick Conducting Specimen Using Eddy Current Testing

被引:0
作者
Mahesh Raja Perumal
Krishnan Balasubramaniam
Kavitha Arunachalam
机构
[1] Indian Institute of Technology Madras,Electromagnetic Research Laboratory, Department of Engineering Design
[2] Indian Institute of Technology Madras,Department of Mechanical Engineering, Centre for Non
来源
Journal of Nondestructive Evaluation | 2018年 / 37卷
关键词
Conducting specimen; Eddy current testing; Sub surface defect; Thick plate;
D O I
暂无
中图分类号
学科分类号
摘要
Understanding the scope and limitations of non-destructive testing procedure is essential for selecting the appropriate test parameters for material inspection. This paper presents the scope of material (δs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta_{s} $$\end{document}) and probe dependent (δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta_{t} $$\end{document}) penetration depths for determining the optimal test frequency (fopt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{opt} ) $$\end{document} for detection of sub surface defects in electrically thick conducting specimens. Numerical modelling is carried out for a pancake coil above an electrically thick aluminium plate, t/δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t/\delta_{t} $$\end{document} > 1, to study the influence of the EC probe and defect location (tdf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t_{df} $$\end{document}) on the test frequency for near and deep sub surface defects. The study concludes that the optimal test frequency, fopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{opt} $$\end{document} for detection of deep sub surface defects (tdf/t≈1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t_{df} /t \approx 1 $$\end{document}) is determined by the probe dependent skin depth, δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta_{t} $$\end{document}, and the plate thickness is related to fopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{opt} $$\end{document} by, t∝1/fopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t \propto 1/\sqrt {f_{opt} } $$\end{document}. The numerical observations were experimentally validated for machined sub surface notches on a 10 mm thick (t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document}) aluminium plate.
引用
收藏
相关论文
共 66 条
  • [1] Capobianco TE(1990)Eddy current probe sensitivity as a function of coil construction parameters Res. Nondestr. Eval. 2 169-186
  • [2] Splett JD(2013)Fast analytical modeling of eddy current non-destructive testing of magnetic material J. Nondestr. Eval. 32 294-299
  • [3] Iyer HK(2013)Novel coupled electric field method for defect characterization in eddy current non-destructive testing systems J. Nondestr. Eval. 33 471-480
  • [4] Bouchala T(2014)Eddy current testing and evaluation of far-side corrosion around rivet in jet-engine intake of aging supersonic aircraft J. Nondestr. Eval. 31 99-107
  • [5] Abdelhadi B(2011)Evaluation of equibiaxial compressive stress introduced into austenitic stainless steel using an eddy current method J. Nondestr. Eval. 31 349-356
  • [6] Benoudjit A(2012)Development of an eddy current inspection technique with surface magnetization to evaluate the carburization thickness of ethylene pyrolysis furnace tubes J. Nondestr. Eval. 32 286-293
  • [7] Bouchala T(2013)Magnetic nondestructive test for resistance spot welds using magnetic flux penetration and eddy current methods J. Nondestr. Eval. 6 1511-1517
  • [8] Abdelhadi B(2006)Performance of magnetic pulsed-eddy-current system using high dynamic and high linearity improved Giant Magneto-Resistance (GMR) Magnetometer IEEE Sens. J. 226 69-75
  • [9] Benoudjit A(2015)Optimisation of pulsed eddy current probe for detection of sub-surface defects in stainless steel plates Sens. Actuators, A 43 606-614
  • [10] Kim J(2010)Source separation techniques applied to the detection of subsurface defects in the eddy current NDT of aeronautical lap-joints NDT E Int. 4602 1-10