On the Optimal Transport of Semiclassical Measures

被引:0
作者
Lorenzo Zanelli
机构
[1] University of Padova,Department of Mathematics
来源
Applied Mathematics & Optimization | 2016年 / 74卷
关键词
Schrödinger equation; Optimal transport; Hamilton–Jacobi equation; 81Q20; 49Q20; 35F21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the optimal transport of projected semiclassical measures on the flat torus which are linked to a class of Schrödinger’s type equations.
引用
收藏
页码:325 / 342
页数:17
相关论文
共 23 条
[1]  
Ambrosio L(2011)Semiclassical limit of quantum dynamics with rough potentials and well posedness of transport equations with measure initial data Commun. Pure. Appl. Math. 64 1199-1242
[2]  
Figalli A(1983)Viscosity solutions of Hamilton-Jacobi equations Trans. Am. Math. Soc. 277 1-42
[3]  
Friesecke G(2003)Some new PDE methods for weak KAM theory Calc. Var. PDE 17 159-177
[4]  
Giannoulis J(2010)Optimal transportation on non-compact manifolds Israel J. Math. 175 1-59
[5]  
Paul T(2011)A remark on the potentials of optimal transport maps Acta Appl. Math. 115 123-138
[6]  
Crandall MG(2013)Displacement interpolation from a Hamiltonian point of view J. Funct. Anal. 265 3163-3203
[7]  
Lions PL(1988)Viscosity solutions of fully nonlinear second order equations and optimal stochastic control infinite dimensions Acta Math. 161 243-278
[8]  
Evans LC(2012)Convergence of a quantum normal form and an exact quantization formula J. Funct. Anal. 262 3340-3393
[9]  
Fathi A(1993)Sur les mesures de Wigner. (French) [On Wigner measures] Rev. Mat. Iberoamericana 9 553-618
[10]  
Figalli A(2014)Wigner measures supported on weak KAM tori J. D’Anal. Math. 123 107-137