N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 CFT3’s from N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 gauged supergravity

被引:0
作者
Miguel Chamorro-Burgos
Adolfo Guarino
Colin Sterckx
机构
[1] Universidad de Oviedo,Departamento de Física
[2] Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA),Université Libre de Bruxelles (ULB) and International Solvay Institutes
[3] Service de Physique Théorique et Mathématique,undefined
关键词
Supergravity Models; Superstring Vacua; AdS-CFT Correspondence; Extended Supersymmetry;
D O I
10.1007/JHEP06(2023)068
中图分类号
学科分类号
摘要
We use holography and four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 gauged supergravity to collect evidence for a large class of interconnected three-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal field theories. On the gravity side, we construct a one-parameter family of ISO(3) × ISO(3) gaugings of half-maximal supergravity containing a rich structure of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 AdS4 solutions at fixed radius. By looking at excitations around these AdS4 solutions, the spectrum of low lying operators in the dual N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 CFT3’s is computed and further arranged into 𝔬𝔰(2|4) supermultiplets. Upon suitable removal of gauge redundancies, we identify the Zamolodchikov metric on the conformal manifold dual to the AdS4 moduli space, and recover previous results in the S-fold literature. Two special points of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetry enhancement occur. While one describes an S-fold CFT3 dual to a non-geometric type IIB twisted compactification, the string-theoretic realisation of the other, if any, is still lacking.
引用
收藏
相关论文
共 135 条
  • [31] Hirano S(2021)undefined JHEP 11 201-undefined
  • [32] D’Hoker E(2011)undefined JHEP 06 102-undefined
  • [33] Estes J(2006)undefined JHEP 05 031-undefined
  • [34] Gutperle M(2003)undefined JHEP 02 21-undefined
  • [35] Clark A(2003)undefined JHEP 11 163-undefined
  • [36] Karch A(2006)undefined JHEP 09 87-undefined
  • [37] D’Hoker E(2010)undefined Phys. Lett. B 688 102-undefined
  • [38] Estes J(2010)undefined Phys. Lett. B 685 028-undefined
  • [39] Gutperle M(2011)undefined JHEP 05 099-undefined
  • [40] Gaiotto D(2007)undefined JHEP 05 1700061-undefined