Identifiability and Equivalence of GLLIRM Models

被引:0
作者
Javier Revuelta
机构
[1] Autonoma University of Madrid,Department of Social Psychology and Methodology
来源
Psychometrika | 2009年 / 74卷
关键词
generalized logit–linear item response model; nominal categories model; identifiability; equivalence; item-response theory;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized logit–linear item response model (GLLIRM) is a linearly constrained nominal categories model (NCM) that computes the scale and intercept parameters for categories as a weighted sum of basic parameters. This paper addresses the problems of the identifiability of the basic parameters and the equivalence between different GLLIRM models. It is shown that the identifiability of the basic parameters depends on the size and rank of the coefficient matrix of the linear functions. Moreover, two models are observationally equivalent if the product of the respective coefficient matrices has full column rank. Finally, the paper also explores the relations between the parameters of nested models.
引用
收藏
页码:257 / 272
页数:15
相关论文
共 34 条
[1]  
Bartels R.(1985)Identification in econometrics The American Statistician 39 102-104
[2]  
Bechger T. M.(2004)Structural equation modelling of multiple facet data. Extending models for multitrait–multimethod data Psicológica 25 253-274
[3]  
Maris G.(2001)Identifiability of nonlinear logistic test models Psychometrika 66 357-371
[4]  
Bechger T. M.(2002)Equivalent linear logistic test models Psychometrika 67 123-136
[5]  
Verhelst N. D.(2002)A feasibility study of on-the-fly adaptive testing Journal of Technology, Learning and Assessment 2 4-29
[6]  
Verstralen H. F. M.(1972)Estimating item parameters and latent ability when responses are scored in two or more nominal categories Psychometrika 37 29-51
[7]  
Bechger T. M.(1981)Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm Psychometrika 46 443-459
[8]  
Verstralen H. F. M.(1999)Generating items during testing. Psychometric issues and models Psychometrika 64 407-433
[9]  
Verhelst N. D.(1981)On the existence and uniqueness of maximum-likelihood estimates in the Rasch model Psychometrika 46 59-77
[10]  
Bejar I. I.(1983)Logistic latent trait model with linear constraints Psychometrika 48 3-26