Around q-Appell polynomial sequences

被引:0
作者
Ana F. Loureiro
Pascal Maroni
机构
[1] Inst. Sup. de Engenharia de Coimbra & CMUP,Lab. Jacques
[2] Université Pierre et Marie Curie,Louis Lions—CNRS
来源
The Ramanujan Journal | 2011年 / 26卷
关键词
Orthogonal polynomials; Appell sequences; Lowering operators; -derivative; Hahn’s operator; Quadratic decomposition; 33C45; 42C05; 42D05;
D O I
暂无
中图分类号
学科分类号
摘要
First we show that the quadratic decomposition of the Appell polynomials with respect to the q-divided difference operator is supplied by two other Appell sequences with respect to a new operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}_{q;q^{-\varepsilon}}$\end{document}, where ε represents a complex parameter different from any negative even integer number. While seeking all the orthogonal polynomial sequences invariant under the action of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}_{\sqrt{q};q^{-\varepsilon/2}}$\end{document} (the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}_{\sqrt{q};q^{-\varepsilon/2}}$\end{document}-Appell), only the Wall q-polynomials with parameter qε/2+1 are achieved, up to a linear transformation. This brings a new characterization of these polynomial sequences.
引用
收藏
页码:311 / 321
页数:10
相关论文
共 18 条
[1]  
Al-Salam W.A.(1965)Some orthogonal Math. Nachr. 30 47-61
[2]  
Carlitz L.(1880)-polynomials Ann. Sci. Éc. Norm. Super. 9 119-144
[3]  
Appell P.(2002)Sur une classe de polynômes Georgian Math. J. 9 413-422
[4]  
Ben Cheikh Y.(2003)On obtaining dual sequences via quasi-monomiality Appl. Math. Comput. 141 63-76
[5]  
Ben Cheikh Y.(1968)Some results on quasi-monomiality Duke Math. J. 35 505-518
[6]  
Chihara T.S.(2002)Orthogonal polynomials with Brenke-type generating functions Acta Appl. Math. 71 49-115
[7]  
Khériji L.(2008)The Expo. Math. 26 177-186
[8]  
Maroni P.(2011)-classical orthogonal polynomials J. Approx. Theory 163 883-903
[9]  
Loureiro A.F.(1990)Quadratic decomposition of Appell sequences Riv. Mat. Pura Appl. 6 19-53
[10]  
Maroni P.(1993)Quadratic decomposition of Laguerre polynomials via lowering operators J. Comput. Appl. Math. 48 133-155