The cross anomalous dimension in maximally supersymmetric Yang-Mills theory

被引:0
作者
Hagen Münkler
机构
[1] Institut für Theoretische Physik,Institut für Physik and IRIS Adlershof
[2] Eidgenössische Technische Hochschule Zürich,undefined
[3] Humboldt-Universität zu Berlin,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
AdS-CFT Correspondence; Renormalization Group; Supersymmetric Gauge Theory; Wilson, ’t Hooft and Polyakov loops;
D O I
暂无
中图分类号
学科分类号
摘要
The cross or soft anomalous dimension matrix describes the renormalization of Wilson loops with a self-intersection and is an important object in the study of infrared divergences of scattering amplitudes. In this paper it is studied for the Maldacena-Wilson loop in N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} supersymmetric Yang-Mills theory and Euclidean kinematics. We consider both the strong-coupling description in terms of minimal surfaces in AdS5 as well as the weak-coupling side up to the two-loop level. In either case, the coefficients of the cross anomalous dimension matrix can be expressed in terms of the cusp anomalous dimension. The strong-coupling description displays a Gross-Ooguri phase transition and we argue that the cross anomalous dimension is an interesting object to study in an integrability-based approach.
引用
收藏
相关论文
共 33 条
  • [1] Gardi E(2009)Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes JHEP 03 079-undefined
  • [2] Magnea L(2016)Three-loop corrections to the soft anomalous dimension in multileg scattering Phys. Rev. Lett. 117 172002-undefined
  • [3] Almelid Ø(1998)Wilson loops in large N field theories Phys. Rev. Lett. 80 4859-undefined
  • [4] Duhr C(2012)Review of AdS/CFT Integrability: An Overview Lett. Math. Phys. 99 3-undefined
  • [5] Gardi E(2012)Hexagon Remainder Function in the Limit of Self-Crossing up to three Loops JHEP 04 023-undefined
  • [6] Maldacena JM(2011)Wilson loop remainder function for null polygons in the limit of self-crossing JHEP 05 114-undefined
  • [7] Beisert N(2007)Gluon scattering amplitudes at strong coupling JHEP 06 064-undefined
  • [8] Dorn H(2011)Generalized quark-antiquark potential at weak and strong coupling JHEP 06 131-undefined
  • [9] Wuttke S(2001)String breaking from ladder diagrams in SYM theory JHEP 03 042-undefined
  • [10] Dorn H(2017)Quark-antiquark potential in defect conformal field theory JHEP 10 079-undefined